Enhancing Spatio-temporal Quantile Forecasting with Curriculum Learning: Lessons Learned
- URL: http://arxiv.org/abs/2406.12709v2
- Date: Mon, 16 Sep 2024 14:44:53 GMT
- Title: Enhancing Spatio-temporal Quantile Forecasting with Curriculum Learning: Lessons Learned
- Authors: Du Yin, Jinliang Deng, Shuang Ao, Zechen Li, Hao Xue, Arian Prabowo, Renhe Jiang, Xuan Song, Flora Salim,
- Abstract summary: Training models on problem-temporal (ST) data poses an open stacking due to the complicated and diverse nature of the data itself.
It is challenging to ensure the model's performance directly trained on the original ST data.
We present an innovative paradigm that incorporates three separate forms of curriculum learning specifically targeting from spatial, temporal, and quantile perspectives.
- Score: 11.164896279040379
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training models on spatio-temporal (ST) data poses an open problem due to the complicated and diverse nature of the data itself, and it is challenging to ensure the model's performance directly trained on the original ST data. While limiting the variety of training data can make training easier, it can also lead to a lack of knowledge and information for the model, resulting in a decrease in performance. To address this challenge, we presented an innovative paradigm that incorporates three separate forms of curriculum learning specifically targeting from spatial, temporal, and quantile perspectives. Furthermore, our framework incorporates a stacking fusion module to combine diverse information from three types of curriculum learning, resulting in a strong and thorough learning process. We demonstrated the effectiveness of this framework with extensive empirical evaluations, highlighting its better performance in addressing complex ST challenges. We provided thorough ablation studies to investigate the effectiveness of our curriculum and to explain how it contributes to the improvement of learning efficiency on ST data.
Related papers
- AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing [64.79967583649407]
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences.
Existing KT models typically follow a single-step training paradigm, which leads to significant error accumulation.
We propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT) which focuses on the multi-step KT task.
arXiv Detail & Related papers (2025-04-07T03:31:57Z) - LLM-driven Effective Knowledge Tracing by Integrating Dual-channel Difficulty [9.683271515093994]
We propose a novel Dual-channel Difficulty-aware Knowledge Tracing (DDKT) framework.
It incorporates difficulty bias-aware algorithms and student mastery algorithms for precise difficulty measurement.
Our framework introduces three key innovations: (1) Difficulty Balance Perception Sequence (DBPS) - students' subjective perceptions combined with objective difficulty, measuring gaps between LLM-assessed difficulty, mathematical-statistical difficulty, and students' subjective perceived difficulty through attention mechanisms; (2) Difficulty Mastery Ratio (DMR) - precise modeling of student mastery levels through different difficulty zones; and (3) Knowledge State Update Mechanism - implementing personalized knowledge acquisition through gated
arXiv Detail & Related papers (2025-02-27T09:36:27Z) - Can foundation models actively gather information in interactive environments to test hypotheses? [56.651636971591536]
We introduce a framework in which a model must determine the factors influencing a hidden reward function.
We investigate whether approaches such as self- throughput and increased inference time improve information gathering efficiency.
arXiv Detail & Related papers (2024-12-09T12:27:21Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated learning (FL) offers a compelling framework for training large language models (LLMs)
We focus on machine unlearning, a crucial aspect for complying with privacy regulations like the Right to be Forgotten.
We explore various strategies that enable effective unlearning, such as perturbation techniques, model decomposition, and incremental learning.
arXiv Detail & Related papers (2024-06-14T08:40:58Z) - Variational Curriculum Reinforcement Learning for Unsupervised Discovery
of Skills [25.326624139426514]
We propose a novel approach to unsupervised skill discovery based on information theory, called Value Uncertainty Vari Curriculum Curriculum (VUVC)
We prove that, under regularity conditions, VUVC accelerates the increase of entropy in the visited states compared to the uniform curriculum.
We also demonstrate that the skills discovered by our method successfully complete a real-world robot navigation task in a zero-shot setup.
arXiv Detail & Related papers (2023-10-30T10:34:25Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - Ex-Model: Continual Learning from a Stream of Trained Models [12.27992745065497]
We argue that continual learning systems should exploit the availability of compressed information in the form of trained models.
We introduce and formalize a new paradigm named "Ex-Model Continual Learning" (ExML), where an agent learns from a sequence of previously trained models instead of raw data.
arXiv Detail & Related papers (2021-12-13T09:46:16Z) - Sampling Approach Matters: Active Learning for Robotic Language
Acquisition [42.69529080098759]
We present an exploration of active learning approaches applied to three grounded language problems of varying complexity.
We report on how characteristics of the underlying task, along with design decisions such as feature selection and classification model, drive the results.
arXiv Detail & Related papers (2020-11-16T15:18:10Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
We propose a competence-aware curriculum for visual concept learning in a question-answering manner.
We design a neural-symbolic concept learner for learning the visual concepts and a multi-dimensional Item Response Theory (mIRT) model for guiding the learning process.
Experimental results on CLEVR show that with a competence-aware curriculum, the proposed method achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-07-03T05:08:09Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.