論文の概要: Graph Neural Networks in Histopathology: Emerging Trends and Future Directions
- arxiv url: http://arxiv.org/abs/2406.12808v2
- Date: Thu, 20 Jun 2024 14:33:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:47:45.624737
- Title: Graph Neural Networks in Histopathology: Emerging Trends and Future Directions
- Title(参考訳): 病理組織学におけるグラフニューラルネットワークの新たな動向と今後の方向性
- Authors: Siemen Brussee, Giorgio Buzzanca, Anne M. R. Schrader, Jesper Kers,
- Abstract要約: グラフニューラルネットワークの病理組織学への応用は急速に成長してきた。
階層型GNN,適応型グラフ構造学習,マルチモーダルGNN,高次GNNの4つのトレンドを特定した。
本研究は,本研究の成果を踏まえ,今後の方向性を推し進めるものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Histopathological analysis of Whole Slide Images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fall short in capturing the intricate spatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a promising alternative, adept at directly modeling pairwise interactions and effectively discerning the topological tissue and cellular structures within WSIs. Recognizing the pressing need for deep learning techniques that harness the topological structure of WSIs, the application of GNNs in histopathology has experienced rapid growth. In this comprehensive review, we survey GNNs in histopathology, discuss their applications, and explore emerging trends that pave the way for future advancements in the field. We begin by elucidating the fundamentals of GNNs and their potential applications in histopathology. Leveraging quantitative literature analysis, we identify four emerging trends: Hierarchical GNNs, Adaptive Graph Structure Learning, Multimodal GNNs, and Higher-order GNNs. Through an in-depth exploration of these trends, we offer insights into the evolving landscape of GNNs in histopathological analysis. Based on our findings, we propose future directions to propel the field forward. Our analysis serves to guide researchers and practitioners towards innovative approaches and methodologies, fostering advancements in histopathological analysis through the lens of graph neural networks.
- Abstract(参考訳): 深層学習,特に畳み込みニューラルネットワーク(CNN)の利用が増加し,全スライド画像(WSI)の病理組織学的解析が進んでいる。
しかし、CNNはWSIに固有の複雑な空間依存を捉えるのに不足することが多い。
グラフニューラルネットワーク(GNN)は、ペアの相互作用を直接モデル化し、WSI内のトポロジ組織と細胞構造を効果的に識別する、有望な代替手段を提供する。
WSIsのトポロジ的構造を利用する深層学習技術の必要性を認識し、GNNsの病理組織学への応用は急速に成長してきた。
本総説では,GNNを病理組織学的に調査し,その応用を議論し,今後の発展への道を開く新たなトレンドを探求する。
まず、GNNの基礎と、その病理組織学への応用を解明することから始める。
定量的文献分析を活用することで,階層型GNN,適応型グラフ構造学習,マルチモーダルGNN,高次GNNの4つのトレンドが明らかになった。
これらの傾向の詳細な調査を通じて、病理組織学的解析において、GNNの進化する景観に関する洞察を提供する。
本研究は,本研究の成果を踏まえ,今後の方向性を推し進めるものである。
我々の分析は、研究者や実践者が革新的なアプローチや方法論を導き、グラフニューラルネットワークのレンズによる病理学的分析の進歩を促進するのに役立つ。
関連論文リスト
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds [12.037840490243603]
本稿では,ニューラルネットワークの内部機構について,ニューラル集団幾何学のレンズを用いて検討する。
学習目的の違いが,これらのモデルの組織戦略の違いにどのように影響するかを定量的に評価する。
これらの分析は、ニューラルネットワークにおける機械的および規範的理論を神経集団幾何学を通してブリッジする強力な方向を示す。
論文 参考訳(メタデータ) (2023-12-21T20:40:51Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - A Survey on Explainability of Graph Neural Networks [4.612101932762187]
グラフニューラルネットワーク(GNN)は、グラフベースの強力なディープラーニングモデルである。
本調査は,GNNの既存の説明可能性技術の概要を概観することを目的としている。
論文 参考訳(メタデータ) (2023-06-02T23:36:49Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
グラフニューラルネットワーク(GNN)は、新しい構造化グラフ信号の解釈を可能にする。
基板上の局所的な機能的相互作用を学習することにより、GNNベースのアプローチが大規模ネットワーク研究に堅牢に拡張可能であることを示す。
論文 参考訳(メタデータ) (2021-12-08T12:57:13Z) - A State-of-the-art Survey of Artificial Neural Networks for Whole-slide
Image Analysis:from Popular Convolutional Neural Networks to Potential Visual
Transformers [18.031804027273292]
ホイルスライド画像(WSI)は, 疾患の診断と解析において, 徐々に重要な役割を担っている。
病理学者の仕事の客観性および正確さを高めるために、人工ニューラルネットワーク(ANN)の方法は一般に必要でした。
論文 参考訳(メタデータ) (2021-04-13T14:39:33Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph
Neural Networks [52.76042362922247]
グラフニューラルネットワーク(GNN)は、非ユークリッドグラフ構造を扱うように設計されている。
既存のGNNは様々な手法を用いて提示され、直接比較と相互参照がより複雑になる。
既存のGNNを空間およびスペクトル領域に整理し、各領域内の接続を公開する。
論文 参考訳(メタデータ) (2020-02-27T01:15:10Z) - On Interpretability of Artificial Neural Networks: A Survey [21.905647127437685]
我々は、ニューラルネットワークのメカニズムを理解するための最近の研究を体系的にレビューし、特に医学における解釈可能性の応用について述べる。
本稿では,ファジィ論理や脳科学などの解釈可能性研究の今後の方向性について論じる。
論文 参考訳(メタデータ) (2020-01-08T13:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。