Large Language Models are Biased Because They Are Large Language Models
- URL: http://arxiv.org/abs/2406.13138v1
- Date: Wed, 19 Jun 2024 01:08:03 GMT
- Title: Large Language Models are Biased Because They Are Large Language Models
- Authors: Philip Resnik,
- Abstract summary: This paper seeks to convince the reader that harmful biases are an inevitable consequence arising from the design of large language models.
To the extent that this is true, it suggests that the problem of harmful bias cannot be properly addressed without a serious reconsideration of AI driven by LLMs.
- Score: 7.156628542829618
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper's primary goal is to provoke thoughtful discussion about the relationship between bias and fundamental properties of large language models. We do this by seeking to convince the reader that harmful biases are an inevitable consequence arising from the design of any large language model as LLMs are currently formulated. To the extent that this is true, it suggests that the problem of harmful bias cannot be properly addressed without a serious reconsideration of AI driven by LLMs, going back to the foundational assumptions underlying their design.
Related papers
- Towards Resource Efficient and Interpretable Bias Mitigation in Large Language Models [1.787433808079955]
Large language models (LLMs) have been observed to perpetuate unwanted biases in training data.
In this paper, we mitigate bias by leveraging small biased and anti-biased expert models to obtain a debiasing signal.
Experiments on mitigating gender, race, and religion biases show a reduction in bias on several local and global bias metrics.
arXiv Detail & Related papers (2024-12-02T16:56:08Z) - Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
Large Language Models (LLMs) are being adopted across a wide range of tasks.
Recent research indicates that LLMs can harbor implicit biases even when they pass explicit bias evaluations.
This study highlights that newer or larger language models do not automatically exhibit reduced bias.
arXiv Detail & Related papers (2024-10-13T03:43:18Z) - BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization [0.0]
Large Language Models (LLMs) have become pivotal in advancing natural language processing, yet their potential to perpetuate biases poses significant concerns.
This paper introduces a new framework employing Direct Preference Optimization (DPO) to mitigate gender, racial, and religious biases in English text.
By developing a loss function that favors less biased over biased completions, our approach cultivates a preference for respectful and non-discriminatory language.
arXiv Detail & Related papers (2024-07-18T22:32:20Z) - A Peek into Token Bias: Large Language Models Are Not Yet Genuine Reasoners [58.15511660018742]
This study introduces a hypothesis-testing framework to assess whether large language models (LLMs) possess genuine reasoning abilities.
We develop carefully controlled synthetic datasets, featuring conjunction fallacy and syllogistic problems.
arXiv Detail & Related papers (2024-06-16T19:22:53Z) - Towards Logically Consistent Language Models via Probabilistic Reasoning [14.317886666902822]
Large language models (LLMs) are a promising venue for natural language understanding and generation tasks.
LLMs are prone to generate non-factual information and to contradict themselves when prompted to reason about beliefs of the world.
We introduce a training objective that teaches a LLM to be consistent with external knowledge in the form of a set of facts and rules.
arXiv Detail & Related papers (2024-04-19T12:23:57Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - On the Safety of Open-Sourced Large Language Models: Does Alignment
Really Prevent Them From Being Misused? [49.99955642001019]
We show that open-sourced, aligned large language models could be easily misguided to generate undesired content.
Our key idea is to directly manipulate the generation process of open-sourced LLMs to misguide it to generate undesired content.
arXiv Detail & Related papers (2023-10-02T19:22:01Z) - On The Role of Reasoning in the Identification of Subtle Stereotypes in Natural Language [0.03749861135832073]
Large language models (LLMs) are trained on vast, uncurated datasets that contain various forms of biases and language reinforcing harmful stereotypes.
It is essential to examine and address biases in language models, integrating fairness into their development to ensure that these models do not perpetuate social biases.
This work firmly establishes reasoning as a critical component in automatic stereotype detection and is a first step towards stronger stereotype mitigation pipelines for LLMs.
arXiv Detail & Related papers (2023-07-24T15:12:13Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - Chain of Thought Prompting Elicits Reasoning in Large Language Models [56.811278668446825]
This paper explores the ability of language models to generate a coherent chain of thought.
Experiments show that inducing a chain of thought via prompting can enable sufficiently large language models to better perform reasoning tasks.
arXiv Detail & Related papers (2022-01-28T02:33:07Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
Some consider large-scale language models that can generate long and coherent pieces of text as dangerous, since they may be used in misinformation campaigns.
Here we formulate large-scale language model output detection as a hypothesis testing problem to classify text as genuine or generated.
arXiv Detail & Related papers (2020-02-09T19:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.