論文の概要: Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI)
- arxiv url: http://arxiv.org/abs/2411.16754v1
- Date: Sun, 24 Nov 2024 06:03:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:37:06.190012
- Title: Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI)
- Title(参考訳): ビジュアルカウンタチューリングテスト(VCT^2):AI生成画像の検出と視覚AIインデックス導入の課題を明らかにする
- Authors: Nasrin Imanpour, Shashwat Bajpai, Subhankar Ghosh, Sainath Reddy Sankepally, Abhilekh Borah, Hasnat Md Abdullah, Nishoak Kosaraju, Shreyas Dixit, Ashhar Aziz, Shwetangshu Biswas, Vinija Jain, Aman Chadha, Amit Sheth, Amitava Das,
- Abstract要約: 最近のAI生成画像検出(AGID)には、CNN検出、NPR、DM画像検出、フェイク画像検出、DIRE、LASTED、GAN画像検出、AIDE、SP、DRCT、RINE、OCC-CLIP、De-Fake、Deep Fake Detectionが含まれる。
本稿では,テキスト・ツー・イメージ・モデルによって生成される130K画像からなるベンチマークであるVisual Counter Turing Test (VCT2)を紹介する。
VCT$2$ベンチマークで前述のAGID技術の性能を評価し、AI生成の検出におけるその非効率性を強調した。
- 参考スコア(独自算出の注目度): 5.8695051911828555
- License:
- Abstract: The proliferation of AI techniques for image generation, coupled with their increasing accessibility, has raised significant concerns about the potential misuse of these images to spread misinformation. Recent AI-generated image detection (AGID) methods include CNNDetection, NPR, DM Image Detection, Fake Image Detection, DIRE, LASTED, GAN Image Detection, AIDE, SSP, DRCT, RINE, OCC-CLIP, De-Fake, and Deep Fake Detection. However, we argue that the current state-of-the-art AGID techniques are inadequate for effectively detecting contemporary AI-generated images and advocate for a comprehensive reevaluation of these methods. We introduce the Visual Counter Turing Test (VCT^2), a benchmark comprising ~130K images generated by contemporary text-to-image models (Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and Midjourney 6). VCT^2 includes two sets of prompts sourced from tweets by the New York Times Twitter account and captions from the MS COCO dataset. We also evaluate the performance of the aforementioned AGID techniques on the VCT$^2$ benchmark, highlighting their ineffectiveness in detecting AI-generated images. As image-generative AI models continue to evolve, the need for a quantifiable framework to evaluate these models becomes increasingly critical. To meet this need, we propose the Visual AI Index (V_AI), which assesses generated images from various visual perspectives, including texture complexity and object coherence, setting a new standard for evaluating image-generative AI models. To foster research in this domain, we make our https://huggingface.co/datasets/anonymous1233/COCO_AI and https://huggingface.co/datasets/anonymous1233/twitter_AI datasets publicly available.
- Abstract(参考訳): 画像生成のためのAI技術の普及は、そのアクセシビリティの向上と相まって、これらの画像の誤用が誤情報を拡散する可能性を懸念している。
最近のAI生成画像検出(AGID)には、CNN検出、NPR、DM画像検出、フェイク画像検出、DIRE、LASTED、GAN画像検出、AIDE、SP、DRCT、RINE、OCC-CLIP、De-Fake、Deep Fake Detectionが含まれる。
しかし、現在最先端のAGID技術は、現代のAI生成画像を効果的に検出するには不十分であり、これらの手法の包括的な再評価を提唱する。
本稿では,現代テキスト・画像モデル(Stable Diffusion 2.1,Stable Diffusion XL,Stable Diffusion 3, DALL-E 3,Midjourney 6)によって生成される約130Kの画像からなるベンチマークであるVisual Counter Turing Test (VCT^2)を紹介する。
VCT^2には、New York TimesのTwitterアカウントからのツイートとMS COCOデータセットからのキャプションの2つのプロンプトが含まれている。
また、VCT$^2$ベンチマークにおいて、上記のAGID技術の性能を評価し、AI生成画像の検出におけるそれらの非効率性を強調した。
画像生成AIモデルは進化し続けており、これらのモデルを評価するための定量化フレームワークの必要性がますます重要になっている。
このニーズを満たすために、テクスチャの複雑さやオブジェクトコヒーレンスなど、さまざまな視覚的視点から生成された画像を評価するVisual AI Index(V_AI)を提案し、画像生成AIモデルを評価するための新しい標準を設定した。
この領域の研究を促進するため、https://huggingface.co/datasets/anonymous1233/COCO_AIとhttps://huggingface.co/datasets/anonymous1233/twitter_AIデータセットを公開しています。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
論文 参考訳(メタデータ) (2024-09-24T08:46:13Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
本稿では,AIによる画像検出の課題が解決されたかどうかの検査を行う。
既存の手法の一般化を定量化するために,Chameleonデータセット上で,既製のAI生成画像検出器を9つ評価した。
複数の専門家が同時に視覚的アーチファクトやノイズパターンを抽出するAI生成画像検出装置(AID)を提案する。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery [0.0]
AI生成画像を検出するツールを開発することが重要である。
本稿では、画像とフーリエ周波数分解の両方を入力として扱うデュアルブランチニューラルネットワークアーキテクチャを提案する。
提案モデルでは,CIFAKEデータセットの精度が94%向上し,従来のML手法やCNNよりも優れていた。
論文 参考訳(メタデータ) (2024-06-19T16:42:04Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - AIGCOIQA2024: Perceptual Quality Assessment of AI Generated Omnidirectional Images [70.42666704072964]
我々はAI生成の全方位画像IQAデータベースAIIGCOIQA2024を構築した。
3つの視点から人間の視覚的嗜好を評価するために、主観的IQA実験を行った。
我々は,データベース上での最先端IQAモデルの性能を評価するためのベンチマーク実験を行った。
論文 参考訳(メタデータ) (2024-04-01T10:08:23Z) - Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images [67.18010640829682]
我々は,AI生成画像がテキスト画像検索モデルに目に見えない関連性バイアスをもたらすことを示す。
検索モデルのトレーニングデータにAI生成画像を含めると、目に見えない関連性バイアスが増す。
本研究では,目に見えない関連バイアスを軽減するための効果的なトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:22:58Z) - AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors [24.78672820633581]
深層生成モデルは、偽情報や著作権侵害に対する懸念を高めながら、驚くほど偽のイメージを作成することができる。
実画像と偽画像とを区別するためにディープフェイク検出技術が開発された。
本稿では,視覚言語モデルとアクシデントチューニング技術を用いて,Antifake Promptと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T14:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。