論文の概要: Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations
- arxiv url: http://arxiv.org/abs/2406.14161v1
- Date: Thu, 20 Jun 2024 10:01:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 14:21:16.584008
- Title: Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations
- Title(参考訳): エキスパートによる適応メッシュ生成の反復的サイズフィールド予測
- Authors: Niklas Freymuth, Philipp Dahlinger, Tobias Würth, Philipp Becker, Aleksandar Taranovic, Onno Grönheim, Luise Kärger, Gerhard Neumann,
- Abstract要約: Adaptive Meshing By Expert Reconstruction (AMBER) は模倣学習問題である。
AMBERは、グラフニューラルネットワークとオンラインデータ取得スキームを組み合わせて、専門家メッシュの投影されたサイズフィールドを予測する。
我々は、人間の専門家が提供した2Dメッシュと3Dメッシュ上でAMBERを実験的に検証し、提供されたデモと密に一致し、シングルステップのCNNベースラインを上回った。
- 参考スコア(独自算出の注目度): 49.173541207550485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many engineering systems require accurate simulations of complex physical systems. Yet, analytical solutions are only available for simple problems, necessitating numerical approximations such as the Finite Element Method (FEM). The cost and accuracy of the FEM scale with the resolution of the underlying computational mesh. To balance computational speed and accuracy meshes with adaptive resolution are used, allocating more resources to critical parts of the geometry. Currently, practitioners often resort to hand-crafted meshes, which require extensive expert knowledge and are thus costly to obtain. Our approach, Adaptive Meshing By Expert Reconstruction (AMBER), views mesh generation as an imitation learning problem. AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh on a given intermediate mesh, creating a more accurate subsequent mesh. This iterative process ensures efficient and accurate imitation of expert mesh resolutions on arbitrary new geometries during inference. We experimentally validate AMBER on heuristic 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
- Abstract(参考訳): 多くの工学系は複雑な物理系の正確なシミュレーションを必要とする。
しかし、解析解は単純な問題に対してのみ利用可能であり、有限要素法(FEM)のような数値近似を必要とする。
FEMスケールのコストと精度は、基礎となる計算メッシュの解像度と一致している。
計算速度と精度メッシュと適応分解能のバランスをとるために、幾何の重要な部分により多くのリソースを割り当てる。
現在、実践者は手作りのメッシュを使うことが多い。
我々のアプローチであるアダプティブ・メッシュ・バイ・エキスパート・レコンストラクション(AMBER)は、メッシュ生成を模倣学習問題と見なしている。
AMBERは、グラフニューラルネットワークとオンラインデータ取得スキームを組み合わせて、特定の中間メッシュ上のエキスパートメッシュの投影されたサイズフィールドを予測することで、より正確な後続メッシュを生成する。
この反復的プロセスは、推論中に任意の新しいジオメトリに対して、専門家メッシュの解像度を効率的かつ正確に模倣することを保証する。
我々は、人間の専門家が提供したヒューリスティックな2Dメッシュと3Dメッシュ上でAMBERを実験的に検証し、提供されたデモと密に一致し、シングルステップのCNNベースラインを上回った。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z) - Conformal Predictions Enhanced Expert-guided Meshing with Graph Neural
Networks [8.736819316856748]
本稿では,GNN(Graph Neural Networks)とエキスパートガイダンスを用いて,航空機モデルのためのCFDメッシュの自動生成を行う機械学習方式を提案する。
曲面分類のための2つの最先端モデルであるPointNet++とPointMLPより優れた3次元分割アルゴリズムを提案する。
また,3次元メッシュ分割モデルからCAD表面への射影予測を共形予測法を用いて提案する手法を提案する。
論文 参考訳(メタデータ) (2023-08-14T14:39:13Z) - Multi-GPU Approach for Training of Graph ML Models on large CFD Meshes [0.0]
メッシュベースの数値解法は多くのデザインツールチェーンにおいて重要な部分である。
機械学習に基づく代理モデルは近似解を予測するのに速いが、精度に欠けることが多い。
本稿では、グラフベース機械学習の領域から産業関連メッシュサイズまで、最先端のサロゲートモデルをスケールする。
論文 参考訳(メタデータ) (2023-07-25T15:49:25Z) - MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
regression of physical problems under non-parameterized geometrical
variability [0.30693357740321775]
本稿では,グラフニューラルネットワークに依存しない機械学習手法を提案する。
提案手法は, 明示的な形状パラメータ化を必要とせずに, 大きなメッシュを容易に扱うことができる。
論文 参考訳(メタデータ) (2023-05-22T09:50:15Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - MultiScale MeshGraphNets [65.26373813797409]
我々はMeshGraphNetsからフレームワークを改善するための2つの補完的なアプローチを提案する。
まず、より粗いメッシュ上で高解像度システムの正確なサロゲートダイナミクスを学習できることを実証する。
次に、2つの異なる解像度でメッセージを渡す階層的アプローチ(MultiScale MeshGraphNets)を導入する。
論文 参考訳(メタデータ) (2022-10-02T20:16:20Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks [0.0]
局所近似過程回帰を用いて特定のひずみ空間における応力出力を予測する方法を示す。
FE設定におけるグローバル構造問題を解決する場合のlaGPR近似の局所的性質に適応するために、修正されたニュートン・ラフソン手法が提案される。
論文 参考訳(メタデータ) (2021-05-07T14:49:28Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。