論文の概要: LeYOLO, New Embedded Architecture for Object Detection
- arxiv url: http://arxiv.org/abs/2406.14239v2
- Date: Tue, 03 Jun 2025 11:48:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 04:22:50.361415
- Title: LeYOLO, New Embedded Architecture for Object Detection
- Title(参考訳): LeYOLO - オブジェクト検出のための新しい組込みアーキテクチャ
- Authors: Lilian Hollard, Lucas Mohimont, Nathalie Gaveau, Luiz Angelo Steffenel,
- Abstract要約: MSCOCOをベース検証セットとして用いたオブジェクト検出モデルに2つの重要な貢献点を紹介する。
まず,SSDLiteに匹敵する推論速度を維持する汎用検出フレームワークであるLeNeckを提案する。
第2に, YOLOアーキテクチャにおける計算効率の向上を目的とした, 効率的なオブジェクト検出モデルであるLeYOLOを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient computation in deep neural networks is crucial for real-time object detection. However, recent advancements primarily result from improved high-performing hardware rather than improving parameters and FLOP efficiency. This is especially evident in the latest YOLO architectures, where speed is prioritized over lightweight design. As a result, object detection models optimized for low-resource environments like microcontrollers have received less attention. For devices with limited computing power, existing solutions primarily rely on SSDLite or combinations of low-parameter classifiers, creating a noticeable gap between YOLO-like architectures and truly efficient lightweight detectors. This raises a key question: Can a model optimized for parameter and FLOP efficiency achieve accuracy levels comparable to mainstream YOLO models? To address this, we introduce two key contributions to object detection models using MSCOCO as a base validation set. First, we propose LeNeck, a general-purpose detection framework that maintains inference speed comparable to SSDLite while significantly improving accuracy and reducing parameter count. Second, we present LeYOLO, an efficient object detection model designed to enhance computational efficiency in YOLO-based architectures. LeYOLO effectively bridges the gap between SSDLite-based detectors and YOLO models, offering high accuracy in a model as compact as MobileNets. Both contributions are particularly well-suited for mobile, embedded, and ultra-low-power devices, including microcontrollers, where computational efficiency is critical.
- Abstract(参考訳): ディープニューラルネットワークにおける効率的な計算は、リアルタイム物体検出に不可欠である。
しかし、近年の進歩は主にパラメータやFLOP効率を改善するよりも高性能なハードウェアの改善によるものである。
これは、軽量設計よりもスピードが優先される最新のYOLOアーキテクチャにおいて特に顕著である。
その結果、マイクロコントローラのような低リソース環境に最適化されたオブジェクト検出モデルは、あまり注目されなかった。
限られた計算能力を持つデバイスでは、既存のソリューションは主にSSDLiteまたは低パラメータの分類器の組み合わせに依存しており、YOLOのようなアーキテクチャと真に効率的な軽量検出器の間に顕著なギャップを形成している。
パラメータとFLOP効率に最適化されたモデルは、メインストリームのYOLOモデルに匹敵する精度を達成できるだろうか?
そこで本研究では,MSCOCOをベース検証セットとして用いたオブジェクト検出モデルに対する2つの重要なコントリビューションを紹介する。
まず、SSDLiteに匹敵する推論速度を維持しつつ、精度を大幅に向上し、パラメータ数を削減する汎用検出フレームワークであるLeNeckを提案する。
第2に, YOLOアーキテクチャにおける計算効率の向上を目的とした, 効率的なオブジェクト検出モデルであるLeYOLOを提案する。
LeYOLOはSSDLiteベースの検出器とYOLOモデルのギャップを効果的に埋め、MobileNetsほどコンパクトなモデルで高い精度を提供する。
どちらのコントリビューションも、計算効率が重要なマイクロコントローラを含む、モバイル、組み込み、超低消費電力デバイスに特に適している。
関連論文リスト
- A lightweight model FDM-YOLO for small target improvement based on YOLOv8 [0.0]
小さいターゲットは、低いピクセル数、複雑な背景、様々な射撃角度のために検出が困難である。
本稿では,小目標検出に焦点をあて,低計算制約下での物体検出手法について検討する。
論文 参考訳(メタデータ) (2025-03-06T14:06:35Z) - YOLOv12: A Breakdown of the Key Architectural Features [0.5639904484784127]
YOLOv12は、単一ステージのリアルタイム物体検出において重要な進歩である。
最適化されたバックボーン(R-ELAN)、分離可能な7x7の畳み込み、およびFlashAttention駆動のエリアベースアテンションが組み込まれている。
レイテンシに敏感なアプリケーションと高精度なアプリケーションの両方にスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2025-02-20T17:08:43Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
本研究は, YOLOv9オブジェクト検出モデルに焦点をあて, アーキテクチャの革新, トレーニング方法論, 性能改善に焦点をあてる。
汎用高効率層集約ネットワークGELANやProgrammable Gradient Information PGIといった重要な進歩は、特徴抽出と勾配流を著しく向上させる。
本稿では, YOLOv9の内部特徴とその実世界の応用性について, リアルタイム物体検出の最先端技術として確立した。
論文 参考訳(メタデータ) (2024-09-12T07:46:58Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - YOLO-TLA: An Efficient and Lightweight Small Object Detection Model based on YOLOv5 [19.388112026410045]
YOLO-TLAは、YOLOv5上に構築された高度な物体検出モデルである。
まず、ネックネットワークピラミッドアーキテクチャにおいて、小さなオブジェクトに対する検出層を新たに導入する。
このモジュールはスライディングウィンドウの特徴抽出を使い、計算要求とパラメータ数の両方を効果的に最小化する。
論文 参考訳(メタデータ) (2024-02-22T05:55:17Z) - MODIPHY: Multimodal Obscured Detection for IoT using PHantom Convolution-Enabled Faster YOLO [10.183459286746196]
YOLO Phantomは、史上最小のYOLOモデルのひとつです。
YOLO Phantomは最新のYOLOv8nモデルと同等の精度を実現し、パラメータとモデルサイズを同時に削減する。
実際の有効性は、高度な低照度カメラとRGBカメラを備えたIoTプラットフォーム上で実証され、AWSベースの通知エンドポイントにシームレスに接続される。
論文 参考訳(メタデータ) (2024-02-12T18:56:53Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
この作業は、超低レイテンシアプリケーションのために、最先端のオブジェクト検出モデルをFPGAデバイスにデプロイする際の課題に対処する。
YOLOアクセラレータにはストリーミングアーキテクチャ設計を採用しており、チップ上で完全なモデルを深くパイプライン化して実装しています。
データフロー方式でYOLOモデルの動作をサポートする新しいハードウェアコンポーネントを導入し、オンチップメモリリソースの制限に対処するために、オフチップメモリバッファリングを導入する。
論文 参考訳(メタデータ) (2023-09-04T13:15:01Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
本稿では, 最先端のYOLOフレームワークをベースとした, 効率的で低複雑さかつアンカーフリーな物体検出器を提案する。
我々は,訓練中の過剰適合を効果的に抑制する拡張データ拡張法を開発し,小型物体の検出精度を向上させるためにハイブリッドランダム損失関数を設計する。
私たちのベースラインモデルは、MS 2017データセットで50.6%のAP50:95と69.8%のAP50、VisDrone 2019-DETデータセットで26.4%のAP50と44.8%のAP50に達し、エッジコンピューティングデバイスNvidia上でリアルタイム要求(FPS>=30)を満たす。
論文 参考訳(メタデータ) (2023-02-15T06:05:14Z) - CNN-transformer mixed model for object detection [3.5897534810405403]
本稿では,トランスを用いた畳み込みモジュールを提案する。
CNNが抽出した詳細特徴と変換器が抽出したグローバル特徴とを融合させることにより、モデルの認識精度を向上させることを目的とする。
Pascal VOCデータセットでの100ラウンドのトレーニングの後、結果の精度は81%に達し、resnet101[5]をバックボーンとして使用したRCNN[4]よりも4.6向上した。
論文 参考訳(メタデータ) (2022-12-13T16:35:35Z) - DAMO-YOLO : A Report on Real-Time Object Detection Design [19.06518351354291]
本稿では,最新のYOLOシリーズよりも高速かつ高精度なオブジェクト検出手法であるDAMO-YOLOを提案する。
我々は最大エントロピーの原理で導かれるMAE-NASを用いて検出バックボーンを探索する。
「首と首のデザインでは、大首と小首の規則に従っている。」
論文 参考訳(メタデータ) (2022-11-23T17:59:12Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
本研究では,フロー推定タスクにおいて,より優れたエンコーダアーキテクチャを自動で見つけるために,FlowNASというニューラルアーキテクチャ探索手法を提案する。
実験の結果、スーパーネットワークから受け継いだ重み付きアーキテクチャは、KITTI上で4.67%のF1-allエラーを達成していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T09:05:25Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
簡易なアンカーフリー物体検出器の特徴ピラミッドネットワーク (FPN) と予測ヘッドを探索し, より効率的な物体検出手法を提案する。
慎重に設計された検索空間、検索アルゴリズム、ネットワーク品質を評価するための戦略により、8つのV100 GPUを使用して、4日以内に最高のパフォーマンスの検知アーキテクチャを見つけることができる。
論文 参考訳(メタデータ) (2021-10-24T12:20:04Z) - Mitigating severe over-parameterization in deep convolutional neural
networks through forced feature abstraction and compression with an
entropy-based heuristic [7.503338065129185]
本稿では,エントロピーに基づく畳み込み層推定(EBCLE)を提案する。
EBCLEを用いて訓練したより広いが浅いモデルの相対的有効性を強調する実証的証拠を提示する。
論文 参考訳(メタデータ) (2021-06-27T10:34:39Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - EfficientPose: Efficient Human Pose Estimation with Neural Architecture
Search [47.30243595690131]
効率的なバックボーンと効率的なヘッドの2つの部分を含む、人間のポーズ推定を目的とした効率的なフレームワークを提案します。
我々の最小モデルは、MPIIで88.1%のPCKh@0.5の0.65 GFLOPしか持たず、我々の大モデルは2 GFLOPしか持たないが、その精度は最先端の大型モデルと競合する。
論文 参考訳(メタデータ) (2020-12-13T15:38:38Z) - Real-time object detection method based on improved YOLOv4-tiny [0.0]
YOLOv4-tiny は YOLOv4 に基づいて提案され,ネットワーク構造をシンプルにし,パラメータを削減する。
まず、Yolov4-tinyの2つのCSPBlockモジュールの代わりにResNet-Dネットワークで2つのResBlock-Dモジュールを使用する。
補助ネットワークの設計では、グローバルな特徴を抽出するために5x5の受容場を得るために2つの連続した3x3畳み込みを使用し、より効果的な情報を抽出するためにチャネルアテンションと空間アテンションも使用される。
論文 参考訳(メタデータ) (2020-11-09T08:26:28Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
サンプル選択とランキングの両方を導くことで、アーキテクチャとトレーニングのレシピを共同でスコアする精度予測器を提案する。
高速な進化的検索をCPU分で実行し、さまざまなリソース制約に対するアーキテクチャと準備のペアを生成します。
FBNetV3は最先端のコンパクトニューラルネットワークのファミリーを構成しており、自動と手動で設計された競合より優れている。
論文 参考訳(メタデータ) (2020-06-03T05:20:21Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
パターンと接続性を組み合わせた新しい空間空間,すなわちパターンベースの空間空間を導入し,高度に正確かつハードウェアに親しみやすいものにした。
新たなパターンベースの空間性に対する我々のアプローチは,モバイルプラットフォーム上での高効率DNN実行のためのコンパイラ最適化に自然に適合する。
論文 参考訳(メタデータ) (2020-01-20T16:17:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。