論文の概要: Translating Across Cultures: LLMs for Intralingual Cultural Adaptation
- arxiv url: http://arxiv.org/abs/2406.14504v1
- Date: Thu, 20 Jun 2024 17:06:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 12:33:17.525299
- Title: Translating Across Cultures: LLMs for Intralingual Cultural Adaptation
- Title(参考訳): 異文化の翻訳:言語内文化適応のためのLLM
- Authors: Pushpdeep Singh, Mayur Patidar, Lovekesh Vig,
- Abstract要約: 文化適応の課題を定義し,この課題に対する様々なモデルをベンチマークする評価フレームワークを作成する。
文化的バイアスやステレオタイプを含む自動適応の可能性について分析する。
- 参考スコア(独自算出の注目度): 12.5954253354303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LLMs are increasingly being deployed for multilingual applications and have demonstrated impressive translation capabilities between several low and high resource languages. An aspect of translation that often gets overlooked is that of cultural adaptation, or modifying source culture references to suit the target culture. Cultural adaptation has applications across several creative industries and requires intimate knowledge of source and target cultures during translation. While specialized translation models still outperform LLMs on the machine translation task when viewed from the lens of correctness, they are not sensitive to cultural differences often requiring manual correction. LLMs on the other hand have a rich reservoir of cultural knowledge embedded within its parameters that can be potentially exploited for such applications. In this paper we define the task of cultural adaptation and create an evaluation framework to benchmark different models for this task. We evaluate the performance of modern LLMs for cultural adaptation and analyze their cross cultural knowledge while connecting related concepts across different cultures. We also analyze possible issues with automatic adaptation including cultural biases and stereotypes. We hope that this task will offer more insight into the cultural understanding of LLMs and their creativity in cross-cultural scenarios.
- Abstract(参考訳): LLMはますます多言語アプリケーションにデプロイされ、低リソース言語と高リソース言語の間で印象的な翻訳能力を発揮している。
しばしば見落とされがちな翻訳の側面は、文化適応の側面であり、あるいは、対象文化に合うようにソース文化の参照を変更することである。
文化適応は、いくつかのクリエイティブ産業に応用され、翻訳中にソースとターゲット文化の深い知識を必要とする。
特殊翻訳モデルは、正確さのレンズから見た場合、機械翻訳タスクにおいてLLMよりも優れているが、しばしば手動修正を必要とする文化的な違いに敏感ではない。
一方、LLMは、そのパラメータに埋め込まれた文化的知識の豊富な貯水池を持ち、そのような用途に活用できる可能性がある。
本稿では,文化適応の課題を定義し,その課題に対する様々なモデルのベンチマークを行うための評価枠組みを作成する。
文化適応のための現代LLMの性能評価を行い、異なる文化をまたいだ関連概念を結びつけながら、それらの文化的知識を横断的に分析する。
また,文化的バイアスやステレオタイプを含む自動適応の問題も分析した。
このタスクは、LLMの文化的理解と、文化横断的なシナリオにおけるそれらの創造性について、より深い洞察を提供することを期待します。
関連論文リスト
- Methodology of Adapting Large English Language Models for Specific Cultural Contexts [10.151487049108626]
本稿では,特定の文化的文脈における大規模モデルの迅速な適応手法を提案する。
適応LLMは、ドメイン固有の知識と安全性値への適応性において、その能力を著しく向上させる。
論文 参考訳(メタデータ) (2024-06-26T09:16:08Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
本稿では,2つのテキスト生成タスクにおける文化能力の評価に焦点をあてる。
我々は,文化,特に国籍の明示的なキューが,そのプロンプトに乱入している場合のモデル出力を評価する。
異なる国におけるアウトプットのテキスト類似性とこれらの国の文化的価値との間には弱い相関関係がある。
論文 参考訳(メタデータ) (2024-06-17T14:03:27Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。
本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LCMの能力と限界について検討する。
論文 参考訳(メタデータ) (2024-05-07T20:28:34Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [68.37589899302161]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - Does Mapo Tofu Contain Coffee? Probing LLMs for Food-related Cultural Knowledge [21.87066736535593]
FmLAMA(FmLAMA)は、食品関連の文化的事実と食実践のバリエーションに着目した多言語データセットである。
我々は,LLMを様々なアーキテクチャや構成にわたって分析し,その性能を単言語と多言語の両方で評価する。
論文 参考訳(メタデータ) (2024-04-10T08:49:27Z) - CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge [69.82940934994333]
我々は、人間とAIのコラボレーションを活用して、挑戦的な評価データセットを構築するインタラクティブなレッドチームシステムであるCulturalTeamingを紹介する。
我々の研究は、CulturalTeamingの様々なAI支援モードが、文化的な質問の作成においてアノテータを支援することを明らかにした。
CULTURALBENCH-V0.1は、ユーザのリピートの試みにより、コンパクトだが高品質な評価データセットである。
論文 参考訳(メタデータ) (2024-04-10T00:25:09Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z) - Benchmarking LLM-based Machine Translation on Cultural Awareness [53.83912076814508]
文化的内容の翻訳は、効果的な異文化間コミュニケーションに不可欠である。
インコンテキスト学習の最近の進歩は、機械翻訳タスクにおける大規模言語モデル(LLM)のガイドに軽量なプロンプトを利用する。
我々は、文化的に関連する並列コーパスを構築するために、新しいデータキュレーションパイプラインを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:56:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。