論文の概要: Surface Normal Reconstruction Using Polarization-Unet
- arxiv url: http://arxiv.org/abs/2406.15118v1
- Date: Fri, 21 Jun 2024 13:09:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:32:37.637874
- Title: Surface Normal Reconstruction Using Polarization-Unet
- Title(参考訳): 偏光Unetによる表面正規化
- Authors: F. S. Mortazavi, S. Dajkhosh, M. Saadatseresht,
- Abstract要約: 偏光からの形状(SfP)は、物体の高分解能な3次元再構成のための最良の解の1つである。
本稿では,物体の表面正規化を実現するために,エンドツーエンドのディープラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today, three-dimensional reconstruction of objects has many applications in various fields, and therefore, choosing a suitable method for high resolution three-dimensional reconstruction is an important issue and displaying high-level details in three-dimensional models is a serious challenge in this field. Until now, active methods have been used for high-resolution three-dimensional reconstruction. But the problem of active three-dimensional reconstruction methods is that they require a light source close to the object. Shape from polarization (SfP) is one of the best solutions for high-resolution three-dimensional reconstruction of objects, which is a passive method and does not have the drawbacks of active methods. The changes in polarization of the reflected light from an object can be analyzed by using a polarization camera or locating polarizing filter in front of the digital camera and rotating the filter. Using this information, the surface normal can be reconstructed with high accuracy, which will lead to local reconstruction of the surface details. In this paper, an end-to-end deep learning approach has been presented to produce the surface normal of objects. In this method a benchmark dataset has been used to train the neural network and evaluate the results. The results have been evaluated quantitatively and qualitatively by other methods and under different lighting conditions. The MAE value (Mean-Angular-Error) has been used for results evaluation. The evaluations showed that the proposed method could accurately reconstruct the surface normal of objects with the lowest MAE value which is equal to 18.06 degree on the whole dataset, in comparison to previous physics-based methods which are between 41.44 and 49.03 degree.
- Abstract(参考訳): 現在、物体の3次元再構成は様々な分野で多くの応用がなされており、高分解能3次元再構成に適した方法を選択することは重要な問題であり、3次元モデルに高次元の詳細を表示することは、この分野において深刻な課題である。
これまで高分解能な3次元再構成法が用いられてきた。
しかし、アクティブな3次元再構成手法の問題点は、物体に近い光源を必要とすることである。
偏光からの形状(SfP)は、物体の高分解能な3次元再構成のための最良の解の1つであり、受動的手法であり、アクティブな手法の欠点を持たない。
物体からの反射光の偏光変化は、デジタルカメラの前で偏光カメラまたは偏光フィルタを用いて分析し、フィルタを回転させることで解析することができる。
この情報を用いることで、表面の正常度を高精度に再構成することができ、表面の細部を局所的に再構築することができる。
本稿では,物体の表面正規化を実現するために,エンドツーエンドのディープラーニング手法を提案する。
この方法では、ニューラルネットワークをトレーニングし、その結果を評価するためにベンチマークデータセットが使用されている。
その結果、他の方法や異なる照明条件下で定量的に定性的に評価されている。
結果評価にはMAE値(Mean-Angular-Error)が使用されている。
提案手法は,従来の41.44度から49.03度の物理に基づく手法と比較して,データセット全体のMAE値が18.06度以下である物体の表面の正規化を正確に再現できることを示した。
関連論文リスト
- ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
微妙な幾何を同時に復元し、異なる特徴を持つ領域をまたいだ滑らかさを保つことは自明ではない。
そこで我々は,ND-SDFを提案する。ND-SDFは,通常のシーンとそれ以前のシーンの角偏差を表す正規偏向場を学習する。
本手法は, 壁面や床面などのスムーズなテクスチャ構造を得るだけでなく, 複雑な構造の幾何学的詳細も保存する。
論文 参考訳(メタデータ) (2024-08-22T17:59:01Z) - High Resolution Surface Reconstruction of Cultural Heritage Objects Using Shape from Polarization Method [0.0]
アクティブな手法の欠点のない受動的手法として, 偏光法からの形状について検討した。
偏光から得られる情報を用いて、深度マップの解像度を劇的に向上させることができる。
偏光法と光グラム法の融合は高分解能な3次元再構成を実現するための適切な解である。
論文 参考訳(メタデータ) (2024-06-21T13:14:48Z) - RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction [3.1820300989695833]
本稿では,光度ステレオにより得られる多視点反射率と正規写像を統合するための多目的パラダイムを提案する。
提案手法では, 反射率と正規度の画素ワイドな共同パラメータ化を, 放射光のベクトルとして用いた。
これは、高い曲率または低い視認性を持つ領域の詳細な3D再構成を大幅に改善する。
論文 参考訳(メタデータ) (2023-12-02T19:49:27Z) - Polarimetric Multi-View Inverse Rendering [13.391866136230165]
偏光カメラは、偏光の角度(AoP)と反射光の偏光の度合い(DoP)が物体の表面の正常と関係しているため、3次元再構成に大きな可能性がある。
入力された多視点カラー偏光画像から抽出した幾何的・測光的・偏光的手がかりを効果的に活用するポラリメトリック多視点逆レンダリング(Polarimetric Multi-View Inverse Rendering, Polarimetric MVIR)と呼ばれる新しい3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2022-12-24T12:12:12Z) - High-Quality RGB-D Reconstruction via Multi-View Uncalibrated
Photometric Stereo and Gradient-SDF [48.29050063823478]
本稿では、カメラのポーズ、照明、アルベド、表面の正規化に取り組み、新しい多視点RGB-Dベースの再構成手法を提案する。
提案手法は,特定の物理モデルを用いて画像描画過程を定式化し,実際の表面の体積量を最適化する。
論文 参考訳(メタデータ) (2022-10-21T19:09:08Z) - Estimating Neural Reflectance Field from Radiance Field using Tree
Structures [29.431165709718794]
本研究では,物体のニューラルリフレクタンス場(NReF)を,未知の照明下での多視点画像の集合から推定する手法を提案する。
NReFは3次元形状と物体の視認性を表しており、画像のみから推定することは困難である。
提案手法は,Neural Radiance Field (NeRF) をプロキシ表現として利用することでこの問題を解決し,さらに分解を行う。
論文 参考訳(メタデータ) (2022-10-09T10:21:31Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
本稿では3次元オブジェクト再構成のための非校正光度ステレオの課題に取り組む。
本研究では,物体形状,光方向,光強度を協調的に最適化する手法を提案する。
本手法は,実世界のデータセット上での光推定と形状復元における最先端の精度を示す。
論文 参考訳(メタデータ) (2022-07-16T02:46:15Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
本稿では,測光ステレオ問題に対する無補間深層ニューラルネットワークフレームワークを提案する。
既存のニューラルネットワークベースの方法は、物体の正確な光方向または接地正則のいずれかまたは両方を必要とします。
本稿では,この問題に対する未調整の神経逆レンダリング手法を提案する。
論文 参考訳(メタデータ) (2020-12-12T10:33:08Z) - Depth Completion using Piecewise Planar Model [94.0808155168311]
深度マップは一連の学習された基底で表現することができ、閉じた解法で効率的に解ける。
しかし、この方法の1つの問題は、色境界が深さ境界と矛盾する場合にアーチファクトを生成することである。
私たちは、より厳密な深度回復モデルを実行します。
論文 参考訳(メタデータ) (2020-12-06T07:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。