論文の概要: MAPUNetR: A Hybrid Vision Transformer and U-Net Architecture for Efficient and Interpretable Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2410.22223v1
- Date: Tue, 29 Oct 2024 16:52:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:39:27.079897
- Title: MAPUNetR: A Hybrid Vision Transformer and U-Net Architecture for Efficient and Interpretable Medical Image Segmentation
- Title(参考訳): MAPUNetR:効率的な医用画像分割のためのハイブリッドビジョン変換器とU-Netアーキテクチャ
- Authors: Ovais Iqbal Shah, Danish Raza Rizvi, Aqib Nazir Mir,
- Abstract要約: 本稿では,医用画像セグメンテーションのためのU-Netフレームワークを用いて,トランスフォーマーモデルの強度を相乗化する新しいアーキテクチャMAPUNetRを紹介する。
本モデルでは,分解能保存課題に対処し,セグメンテーションされた領域に着目したアテンションマップを導入し,精度と解釈可能性を高める。
臨床実習における医用画像セグメンテーションの強力なツールとして,本モデルが安定した性能と可能性を維持していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Medical image segmentation is pivotal in healthcare, enhancing diagnostic accuracy, informing treatment strategies, and tracking disease progression. This process allows clinicians to extract critical information from visual data, enabling personalized patient care. However, developing neural networks for segmentation remains challenging, especially when preserving image resolution, which is essential in detecting subtle details that influence diagnoses. Moreover, the lack of transparency in these deep learning models has slowed their adoption in clinical practice. Efforts in model interpretability are increasingly focused on making these models' decision-making processes more transparent. In this paper, we introduce MAPUNetR, a novel architecture that synergizes the strengths of transformer models with the proven U-Net framework for medical image segmentation. Our model addresses the resolution preservation challenge and incorporates attention maps highlighting segmented regions, increasing accuracy and interpretability. Evaluated on the BraTS 2020 dataset, MAPUNetR achieved a dice score of 0.88 and a dice coefficient of 0.92 on the ISIC 2018 dataset. Our experiments show that the model maintains stable performance and potential as a powerful tool for medical image segmentation in clinical practice.
- Abstract(参考訳): 医用画像のセグメンテーションは、医療、診断精度の向上、治療戦略の指示、疾患の進行の追跡において重要である。
このプロセスにより、臨床医は視覚データから重要な情報を抽出し、パーソナライズされた患者のケアを可能にする。
しかし、セグメント化のためのニューラルネットワークの開発は、特に画像解像度を保存する際には困難であり、診断に影響を与える微妙な詳細を検出するのに不可欠である。
さらに、これらの深層学習モデルにおける透明性の欠如は、臨床実践における導入を遅らせている。
モデル解釈可能性の取り組みは、これらのモデルの意思決定プロセスをより透過的にすることに集中している。
本稿では,医用画像セグメンテーションのためのU-Netフレームワークを用いて,トランスフォーマーモデルの強度を相乗化する新しいアーキテクチャであるMAPUNetRを紹介する。
本モデルでは,分解能保存課題に対処し,セグメンテーションされた領域に着目したアテンションマップを導入し,精度と解釈可能性を高める。
BraTS 2020データセットで評価され、MAPUNetRはISIC 2018データセットでダイススコア0.88とダイス係数0.92を達成した。
臨床実習における医用画像セグメンテーションの強力なツールとして,本モデルが安定した性能と可能性を維持していることを示す。
関連論文リスト
- Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [0.0]
我々は,MAMBAフレームワークにステートスペースモデル(SSM)とアドバンスト階層ネットワーク(AHNet)を統合したMamba-Ahnetを紹介する。
Mamba-Ahnetは、SSMの特徴抽出と理解をAHNetの注意機構と画像再構成と組み合わせ、セグメンテーションの精度と堅牢性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-26T08:15:43Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
Inception Large Kernel Attention (I-LKA) モジュールをベースとしたロバストなフレームワークを統合した新しい自己教師型アルゴリズム textbfS$3$-Net を提案する。
我々は、変形可能な畳み込みを積分成分として利用し、優れた物体境界定義のための歪み変形を効果的に捕捉し、デライン化する。
皮膚病変および肺臓器の分節タスクに関する実験結果から,SOTA法と比較して,本手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-08-31T21:28:46Z) - AttResDU-Net: Medical Image Segmentation Using Attention-based Residual
Double U-Net [0.0]
本稿では,既存の医用画像セグメンテーションネットワークを改善したアテンションベース残留Double U-Netアーキテクチャ(AttResDU-Net)を提案する。
CVC clinic-DB、ISIC 2018、2018 Data Science Bowlの3つのデータセットで実験を行い、それぞれ94.35%、91.68%、92.45%のDice Coefficientスコアを得た。
論文 参考訳(メタデータ) (2023-06-25T14:28:08Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
論文 参考訳(メタデータ) (2022-11-03T15:19:59Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Progressive Adversarial Semantic Segmentation [11.323677925193438]
深い畳み込みニューラルネットワークは、完全な監視が与えられた場合、非常によく機能する。
画像解析タスクのための完全教師付きモデルの成功は、大量のラベル付きデータの入手に限られる。
本稿では,新しい医用画像分割モデル,Progressive Adrial Semantic(PASS)を提案する。
論文 参考訳(メタデータ) (2020-05-08T22:48:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。