論文の概要: LaMSUM: A Novel Framework for Extractive Summarization of User Generated Content using LLMs
- arxiv url: http://arxiv.org/abs/2406.15809v1
- Date: Sat, 22 Jun 2024 10:25:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 20:25:27.746508
- Title: LaMSUM: A Novel Framework for Extractive Summarization of User Generated Content using LLMs
- Title(参考訳): LaMSUM: LLMを用いたユーザ生成コンテンツの抽出要約のための新しいフレームワーク
- Authors: Garima Chhikara, Anurag Sharma, V. Gurucharan, Kripabandhu Ghosh, Abhijnan Chakraborty,
- Abstract要約: 大規模言語モデル(LLM)は、要約を含む幅広いNLPタスクにおいて、印象的なパフォーマンスを示している。
投票アルゴリズムを活用して,LLMから抽出要約を生成する新しいフレームワークLaMSUMを提案する。
Llama 3 と Mixtral と Gemini の3つのオープンソース LLM について評価した結果,LaMSUM は最先端の抽出要約法より優れていることがわかった。
- 参考スコア(独自算出の注目度): 6.770555526416268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive performance across a wide range of NLP tasks, including summarization. Inherently LLMs produce abstractive summaries, and the task of achieving extractive summaries through LLMs still remains largely unexplored. To bridge this gap, in this work, we propose a novel framework LaMSUM to generate extractive summaries through LLMs for large user-generated text by leveraging voting algorithms. Our evaluation on three popular open-source LLMs (Llama 3, Mixtral and Gemini) reveal that the LaMSUM outperforms state-of-the-art extractive summarization methods. We further attempt to provide the rationale behind the output summary produced by LLMs. Overall, this is one of the early attempts to achieve extractive summarization for large user-generated text by utilizing LLMs, and likely to generate further interest in the community.
- Abstract(参考訳): 大規模言語モデル(LLM)は、要約を含む幅広いNLPタスクにおいて、印象的なパフォーマンスを示している。
代わってLLMは抽象的な要約を生成するが、LLMを通して抽出的な要約を達成するという課題はいまだに未解明のままである。
本研究では,このギャップを埋めるために,投票アルゴリズムを利用してLLMを用いて抽出要約を生成する新しいフレームワークであるLaMSUMを提案する。
Llama 3 と Mixtral と Gemini の3つのオープンソース LLM について評価した結果,LaMSUM は最先端の抽出要約法より優れていることがわかった。
さらに,LLMが生成したアウトプット・サマリーの背景にある理論的根拠について述べる。
全体として、これはLLMを利用して大きなユーザ生成テキストを抽出的に要約する試みの1つであり、コミュニティにさらなる関心を喚起する可能性が高い。
関連論文リスト
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization [0.27624021966289597]
本稿では,Large Language Models (LLM) を利用した抽出要約フレームワークであるEYEGLAXSを紹介する。
EYEGLAXSは、事実的および文法的整合性を保証するために抽出的な要約に焦点を当てている。
このシステムはPubMedやArXivといった有名なデータセットに新しいパフォーマンスベンチマークを設定する。
論文 参考訳(メタデータ) (2024-08-28T13:52:19Z) - Improving Faithfulness of Large Language Models in Summarization via Sliding Generation and Self-Consistency [5.9858789096400224]
大型言語モデル(LLM)は幻覚と呼ばれる現実的な矛盾の問題に悩まされる。
本稿では,スライディングウィンドウと自己整合性を利用した新しい要約生成戦略,すなわちSliSumを提案する。
SliSumは、LLaMA-2、Claude-2、GPT-3.5を含む多種多様なLLMの短文要約および長文要約における忠実性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-31T08:48:48Z) - A Guide To Effectively Leveraging LLMs for Low-Resource Text Summarization: Data Augmentation and Semi-supervised Approaches [12.582774521907227]
低リソーステキスト要約のための既存のアプローチは、主に推論時に大きな言語モデル(LLM)を使用して要約を直接生成する。
低リソーステキスト要約に LLM を効果的に活用する2つの新しい手法を提案する: 1) LLM ベースのデータ拡張方式である MixSumm と、(2) PPSL は、サンプル効率の半教師付きテキスト要約のための即時的な擬似ラベル方式である。
論文 参考訳(メタデータ) (2024-07-10T03:25:47Z) - Assessing LLMs for Zero-shot Abstractive Summarization Through the Lens of Relevance Paraphrasing [37.400757839157116]
大言語モデル(LLM)は、与えられた記事に対する抽象的な要約のゼロショット生成において最先端のパフォーマンスを達成した。
本稿では,LLMのロバスト性を測定するためのシンプルな戦略であるrelevance paraphrasingを提案する。
論文 参考訳(メタデータ) (2024-06-06T12:08:43Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - BooookScore: A systematic exploration of book-length summarization in the era of LLMs [53.42917858142565]
我々は,識別されたエラータイプを一切含まない要約文の割合を計測する自動測度BooookScoreを開発した。
GPT-4 や 2 のようなクローズドソース LLM は,オープンソースモデルよりも BooookScore の高いサマリーを生成することがわかった。
論文 参考訳(メタデータ) (2023-10-01T20:46:44Z) - Summarization is (Almost) Dead [49.360752383801305]
我々は,大規模言語モデル(LLM)のゼロショット生成能力を評価するため,新しいデータセットを開発し,人間による評価実験を行う。
本研究は, 微調整モデルにより生成した要約や要約よりも, LLM生成要約に対する人間の評価において, 明らかな優位性を示した。
論文 参考訳(メタデータ) (2023-09-18T08:13:01Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
マルチモーダル言語モデル(MLLM)は、マルチモーダルタスクを実行するために強力なLLMに依存している。
本稿では,MLLM 評価ベンチマーク MME について述べる。
知覚能力と認知能力の両方を合計14のサブタスクで測定する。
論文 参考訳(メタデータ) (2023-06-23T09:22:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。