Soft Masked Mamba Diffusion Model for CT to MRI Conversion
- URL: http://arxiv.org/abs/2406.15910v1
- Date: Sat, 22 Jun 2024 18:06:50 GMT
- Title: Soft Masked Mamba Diffusion Model for CT to MRI Conversion
- Authors: Zhenbin Wang, Lei Zhang, Lituan Wang, Zhenwei Zhang,
- Abstract summary: Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are the predominant modalities utilized in the field of medical imaging.
In this study, we aim to train latent diffusion model for CT to MRI conversion, replacing the commonly-used U-Net or Transformer backbone with a State-Space Model (SSM) called Mamba that operates on latent patches.
- Score: 7.973480052235655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are the predominant modalities utilized in the field of medical imaging. Although MRI capture the complexity of anatomical structures with greater detail than CT, it entails a higher financial costs and requires longer image acquisition times. In this study, we aim to train latent diffusion model for CT to MRI conversion, replacing the commonly-used U-Net or Transformer backbone with a State-Space Model (SSM) called Mamba that operates on latent patches. First, we noted critical oversights in the scan scheme of most Mamba-based vision methods, including inadequate attention to the spatial continuity of patch tokens and the lack of consideration for their varying importance to the target task. Secondly, extending from this insight, we introduce Diffusion Mamba (DiffMa), employing soft masked to integrate Cross-Sequence Attention into Mamba and conducting selective scan in a spiral manner. Lastly, extensive experiments demonstrate impressive performance by DiffMa in medical image generation tasks, with notable advantages in input scaling efficiency over existing benchmark models. The code and models are available at https://github.com/wongzbb/DiffMa-Diffusion-Mamba
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond [2.838321145442743]
Mamba is an alternative to template-based deep learning approaches in medical image analysis.
It has linear time complexity, which is a significant improvement over transformers.
Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory.
arXiv Detail & Related papers (2024-10-03T10:23:03Z) - Enhanced Self-supervised Learning for Multi-modality MRI Segmentation and Classification: A Novel Approach Avoiding Model Collapse [6.3467517115551875]
Multi-modality magnetic resonance imaging (MRI) can provide complementary information for computer-aided diagnosis.
Traditional deep learning algorithms are suitable for identifying specific anatomical structures segmenting lesions and classifying diseases with magnetic resonance images.
Self-supervised learning (SSL) can effectively learn feature representations from unlabeled data by pre-training and is demonstrated to be effective in natural image analysis.
Most SSL methods ignore the similarity of multi-modality MRI, leading to model collapse.
We establish and validate a multi-modality MRI masked autoencoder consisting of hybrid mask pattern (HMP) and pyramid barlow twin (PBT
arXiv Detail & Related papers (2024-07-15T01:11:30Z) - I2I-Mamba: Multi-modal medical image synthesis via selective state space modeling [8.909355958696414]
We propose a novel adversarial model for medical image synthesis, I2I-Mamba, to efficiently capture long-range context.
I2I-Mamba offers superior performance against state-of-the-art CNN- and transformer-based methods in synthesizing target-modality images.
arXiv Detail & Related papers (2024-05-22T21:55:58Z) - HC-Mamba: Vision MAMBA with Hybrid Convolutional Techniques for Medical Image Segmentation [5.318153305245246]
We propose HC-Mamba, a new medical image segmentation model based on the modern state space model Mamba.
We introduce the technique of dilated convolution in the HC-Mamba model to capture a more extensive range of contextual information.
In addition, the HC-Mamba model employs depthwise separable convolutions, significantly reducing the number of parameters and the computational power of the model.
arXiv Detail & Related papers (2024-05-08T12:24:50Z) - MedMamba: Vision Mamba for Medical Image Classification [0.0]
Vision transformers (ViTs) and convolutional neural networks (CNNs) have been extensively studied and widely used in medical image classification tasks.
Recent studies have shown that state space models (SSMs) represented by Mamba can effectively model long-range dependencies.
We propose MedMamba, the first Vision Mamba for generalized medical image classification.
arXiv Detail & Related papers (2024-03-06T16:49:33Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
This paper introduces a novel Mamba-based model, Swin-UMamba, designed specifically for medical image segmentation tasks.
Swin-UMamba demonstrates superior performance with a large margin compared to CNNs, ViTs, and latest Mamba-based models.
arXiv Detail & Related papers (2024-02-05T18:58:11Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.