Towards a Formal Foundation for Blockchain Rollups
- URL: http://arxiv.org/abs/2406.16219v1
- Date: Sun, 23 Jun 2024 21:12:19 GMT
- Title: Towards a Formal Foundation for Blockchain Rollups
- Authors: Stefanos Chaliasos, Denis Firsov, Benjamin Livshits,
- Abstract summary: ZK-Rollups aim to address challenges by processing transactions off-chain and validating them on the main chain.
This work presents a formal analysis using the Alloy specification language to examine and design key Layer 2 functionalities.
We propose enhanced models to strengthen security and censorship resistance, setting new standards for the security of rollups.
- Score: 9.760484165522005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blockchains like Bitcoin and Ethereum have revolutionized digital transactions, yet scalability issues persist. Layer 2 solutions, such as validity proof Rollups (ZK-Rollups), aim to address these challenges by processing transactions off-chain and validating them on the main chain. However, concerns remain about security and censorship resistance, particularly regarding centralized control in Layer 2 and inadequate mechanisms for enforcing these properties through Layer 1 contracts. This work presents a formal analysis using the Alloy specification language to examine and design key Layer 2 functionalities, including forced transaction queues, safe blacklisting, and upgradeability. Through this analysis, we identify potential vulnerabilities in current mechanisms and propose enhanced models to strengthen security and censorship resistance, setting new standards for the security of rollups.
Related papers
- Mitigating Challenges in Ethereum's Proof-of-Stake Consensus: Evaluating the Impact of EigenLayer and Lido [4.606106768645647]
The transition from a Proof-of-Work (PoW) to a Proof-of-Stake (PoS) consensus mechanism introduces a transformative approach to blockchain validation.
This paper explores two innovative solutions: EigenLayer and Lido.
We conclude with an evaluation of the combined potential of EigenLayer and Lido to foster a more resilient and inclusive ecosystem.
arXiv Detail & Related papers (2024-10-30T19:58:46Z) - BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - SPOQchain: Platform for Secure, Scalable, and Privacy-Preserving Supply Chain Tracing and Counterfeit Protection [46.68279506084277]
This work proposes SPOQchain, a novel blockchain-based platform that provides comprehensive traceability and originality verification.
It provides an analysis of privacy and security aspects, demonstrating the need and qualification of SPOQchain for the future of supply chain tracing.
arXiv Detail & Related papers (2024-08-30T07:15:43Z) - Impact of Conflicting Transactions in Blockchain: Detecting and Mitigating Potential Attacks [0.2982610402087727]
Conflicting transactions within blockchain networks pose performance challenges and introduce security vulnerabilities.
We propose a set of countermeasures for mitigating these attacks.
Our findings emphasize the critical importance of actively managing conflicting transactions to reinforce blockchain security and performance.
arXiv Detail & Related papers (2024-07-30T17:16:54Z) - Byzantine Attacks Exploiting Penalties in Ethereum PoS [0.0]
This paper investigates the implications of the inactivity leak on safety within the blockchain.
Our findings uncover how penalizing inactive nodes can compromise blockchain properties.
arXiv Detail & Related papers (2024-04-25T06:54:35Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Data Availability and Decentralization: New Techniques for zk-Rollups in Layer 2 Blockchain Networks [14.27943855519429]
This paper introduces new techniques to address the data availability and decentralization challenges in Layer 2 networks.
We introduce the concept of proof of download'', which ensures that Layer 2 nodes cannot aggregate transactions without downloading historical data.
For decentralization, we introduce a new role separation for Layer 2, allowing nodes with limited hardware to participate.
arXiv Detail & Related papers (2024-03-16T06:34:51Z) - Proof of Diligence: Cryptoeconomic Security for Rollups [19.10751432868712]
We introduce an incentivized watchtower network designed to serve as the first line of defense for rollups.
Our main contribution is a Proof of Diligence'' protocol that requires watchtowers to continuously provide a proof that they have verified L2 assertions.
arXiv Detail & Related papers (2024-02-11T16:40:33Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.