論文の概要: Articulate your NeRF: Unsupervised articulated object modeling via conditional view synthesis
- arxiv url: http://arxiv.org/abs/2406.16623v1
- Date: Mon, 24 Jun 2024 13:13:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 14:44:42.806944
- Title: Articulate your NeRF: Unsupervised articulated object modeling via conditional view synthesis
- Title(参考訳): NeRFをアーティキュレートする:条件視合成による教師なし調音物体モデリング
- Authors: Jianning Deng, Kartic Subr, Hakan Bilen,
- Abstract要約: そこで本稿では,頑健な部分を持つ明瞭な物体のポーズと部分分割を学習するための教師なしの手法を提案する。
本手法は,最初の観測から暗黙のモデルを用いて物体の形状と外観を学習する。
- 参考スコア(独自算出の注目度): 24.007950839144918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel unsupervised method to learn the pose and part-segmentation of articulated objects with rigid parts. Given two observations of an object in different articulation states, our method learns the geometry and appearance of object parts by using an implicit model from the first observation, distils the part segmentation and articulation from the second observation while rendering the latter observation. Additionally, to tackle the complexities in the joint optimization of part segmentation and articulation, we propose a voxel grid-based initialization strategy and a decoupled optimization procedure. Compared to the prior unsupervised work, our model obtains significantly better performance, and generalizes to objects with multiple parts while it can be efficiently from few views for the latter observation.
- Abstract(参考訳): そこで本稿では,頑健な部分を持つ明瞭な物体のポーズと部分分割を学習するための新しい教師なし手法を提案する。
本手法は,物体の形状と外観を,第1観察から暗黙的モデルを用いて学習し,第2観察から部分分割と調音を除去し,第2観察から後者の観察をレンダリングする。
さらに,部分分割と調音の結合最適化の複雑さに対処するために,ボクセルグリッドを用いた初期化戦略と分離最適化手法を提案する。
従来の教師なしの作業と比較すると,本モデルは性能が著しく向上し,複数の部分を持つオブジェクトに一般化される。
関連論文リスト
- Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - Relational Prior Knowledge Graphs for Detection and Instance
Segmentation [24.360473253478112]
本稿では,先行値を用いたオブジェクト機能拡張グラフを提案する。
COCOの実験的評価は、リレーショナル先行で拡張されたシーングラフの利用は、オブジェクト検出とインスタンスセグメンテーションの利点をもたらすことを示している。
論文 参考訳(メタデータ) (2023-10-11T15:15:05Z) - Building Rearticulable Models for Arbitrary 3D Objects from 4D Point
Clouds [28.330364666426345]
任意の数の部品を含む日常的な人工物に対して再計算可能なモデルを構築する。
本手法では, 異なる対象部位, どの部位が他の部位に接続されているか, および各部位を接続する接合部の性質を同定する。
論文 参考訳(メタデータ) (2023-06-01T17:59:21Z) - Segmenting Moving Objects via an Object-Centric Layered Representation [100.26138772664811]
深層表現を用いたオブジェクト中心セグメンテーションモデルを提案する。
複数のオブジェクトで合成トレーニングデータを生成するスケーラブルなパイプラインを導入する。
標準的なビデオセグメンテーションベンチマークでモデルを評価する。
論文 参考訳(メタデータ) (2022-07-05T17:59:43Z) - Unsupervised Pose-Aware Part Decomposition for 3D Articulated Objects [68.73163598790255]
本研究では,機械的関節を有する人工関節オブジェクトを対象とする新しい環境に対処するため,PD(unsupervised Pose-aware Part Decomposition)を提案する。
本研究は,(1)非原始的な暗黙的表現による部分分解の教師なし学習を促進させ,(2)単一フレーム形状の監督下での協調パラメータとして機能することを示す。
論文 参考訳(メタデータ) (2021-10-08T23:53:56Z) - Unsupervised Part Discovery by Unsupervised Disentanglement [10.664434993386525]
部分分割は、個々のピクセルのレベルにおける部分ローカライゼーションに関する情報を提供する。
大きなアノテーションのコストは、教師付きアルゴリズムのスケーラビリティを他のオブジェクトカテゴリに制限します。
我々の研究は、監督なしに意味的部分のセグメンテーションを発見できる可能性を示している。
論文 参考訳(メタデータ) (2020-09-09T12:34:37Z) - Attention-based Joint Detection of Object and Semantic Part [4.389917490809522]
我々のモデルは2つのFaster-RCNNモデルに基づいて作成され、それらの特徴を共有して両方の表現を拡張します。
PASCAL-Part 2010データセットの実験では、関節検出は物体検出と部分検出の両方を同時に改善できることが示された。
論文 参考訳(メタデータ) (2020-07-05T18:54:10Z) - Motion-supervised Co-Part Segmentation [88.40393225577088]
本稿では,コパートセグメンテーションのための自己教師型ディープラーニング手法を提案する。
提案手法は,映像から推定される動き情報を有効活用して意味のある物体の発見を可能にする。
論文 参考訳(メタデータ) (2020-04-07T09:56:45Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
複数のオブジェクトを持つ複雑なシーンを生成するレイアウト・ツー・イメージ生成法を開発した。
本手法は,シーン内のオブジェクト間の空間的関係の表現を学習し,レイアウトの忠実度の向上につながる。
本稿では,Fr'echet Inception Distanceのオブジェクト中心適応であるSceneFIDを紹介する。
論文 参考訳(メタデータ) (2020-03-16T21:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。