論文の概要: A Multi-Resolution Mutual Learning Network for Multi-Label ECG Classification
- arxiv url: http://arxiv.org/abs/2406.16928v1
- Date: Wed, 12 Jun 2024 13:40:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:31:46.718117
- Title: A Multi-Resolution Mutual Learning Network for Multi-Label ECG Classification
- Title(参考訳): マルチラベルECG分類のための多解相互学習ネットワーク
- Authors: Wei Huang, Ning Wang, Panpan Feng, Haiyan Wang, Zongmin Wang, Bing Zhou,
- Abstract要約: 本稿では,Multi-Resolution Mutual Learning Network (MRM-Net)を提案する。
MRM-Netはデュアルレゾリューションアテンションアーキテクチャと機能補完機構を備えている。
マルチラベルのECG分類性能において、既存の手法よりも大幅に優れています。
- 参考スコア(独自算出の注目度): 11.105845244103506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiograms (ECG), which record the electrophysiological activity of the heart, have become a crucial tool for diagnosing these diseases. In recent years, the application of deep learning techniques has significantly improved the performance of ECG signal classification. Multi-resolution feature analysis, which captures and processes information at different time scales, can extract subtle changes and overall trends in ECG signals, showing unique advantages. However, common multi-resolution analysis methods based on simple feature addition or concatenation may lead to the neglect of low-resolution features, affecting model performance. To address this issue, this paper proposes the Multi-Resolution Mutual Learning Network (MRM-Net). MRM-Net includes a dual-resolution attention architecture and a feature complementary mechanism. The dual-resolution attention architecture processes high-resolution and low-resolution features in parallel. Through the attention mechanism, the high-resolution and low-resolution branches can focus on subtle waveform changes and overall rhythm patterns, enhancing the ability to capture critical features in ECG signals. Meanwhile, the feature complementary mechanism introduces mutual feature learning after each layer of the feature extractor. This allows features at different resolutions to reinforce each other, thereby reducing information loss and improving model performance and robustness. Experiments on the PTB-XL and CPSC2018 datasets demonstrate that MRM-Net significantly outperforms existing methods in multi-label ECG classification performance. The code for our framework will be publicly available at https://github.com/wxhdf/MRM.
- Abstract(参考訳): 心臓の電気生理学的活動を記録する心電図(ECG)は、これらの疾患を診断するための重要なツールとなっている。
近年,深層学習技術の適用により,ECG信号の分類性能が大幅に向上している。
異なる時間スケールで情報をキャプチャして処理する多分解能特徴分析は、ECG信号の微妙な変化や全体的な傾向を抽出し、ユニークな利点を示す。
しかし、単純な特徴付加や連結に基づく一般的な多分解能解析手法は、低分解能特徴の無視を招き、モデル性能に影響を及ぼす可能性がある。
本稿では,Multi-Resolution Mutual Learning Network (MRM-Net)を提案する。
MRM-Netはデュアルレゾリューションアテンションアーキテクチャと機能補完機構を備えている。
二重分解能アテンションアーキテクチャは、高分解能および低分解能の特徴を並列に処理する。
注意機構を通じて、高解像度で低解像度の分岐は微妙な波形変化や全体のリズムパターンに焦点を合わせることができ、ECG信号における重要な特徴を捉える能力を高めることができる。
一方、特徴補完機構は、特徴抽出器の各層における相互特徴学習を導入する。
これにより、異なる解像度の機能が互いに強化され、情報損失が減少し、モデルの性能と堅牢性が向上する。
PTB-XLとCPSC2018データセットの実験により、MRM-NetはマルチラベルECG分類性能において既存の手法よりも大幅に優れていることが示された。
私たちのフレームワークのコードはhttps://github.com/wxhdf/MRM.orgで公開されます。
関連論文リスト
- Multi-scale Masked Autoencoder for Electrocardiogram Anomaly Detection [5.614826802517409]
MMAE-ECGはECG信号を非重複セグメントに分割し、各セグメントは学習可能な位置埋め込みを割り当てる。
新しいマルチスケールマスキング戦略とマルチスケールアテンション機構は、異なる位置埋め込みとともに、軽量なトランスフォーマーエンコーダを実現する。
論文 参考訳(メタデータ) (2025-02-08T08:18:38Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
交互注意(CEReBrO)を用いた脳振動の表現のための圧縮法について紹介する。
トークン化方式は、チャネルごとのパッチで脳波信号を表現します。
本研究では,チャネル内時間的ダイナミックスとチャネル間空間的相関を共同でモデル化し,通常の自己アテンションに比べて6倍少ないメモリで2倍の速度向上を実現するための注意機構を提案する。
論文 参考訳(メタデータ) (2025-01-18T21:44:38Z) - Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
本稿では,RS画像セマンティックセグメンテーションタスクのための,新しい半教師付きマルチスケール不確かさとクロスTeacher-Student Attention(MUCA)モデルを提案する。
MUCAは、マルチスケールの不確実性整合正則化を導入することにより、ネットワークの異なる層における特徴写像間の整合性を制限する。
MUCAは学生ネットワークの誘導にクロス教師・学生の注意機構を使用し、学生ネットワークにより差別的な特徴表現を構築するよう誘導する。
論文 参考訳(メタデータ) (2025-01-18T11:57:20Z) - PINN-EMFNet: PINN-based and Enhanced Multi-Scale Feature Fusion Network for Breast Ultrasound Images Segmentation [5.246262946799736]
本研究では,PINNに基づくマルチスケール機能融合ネットワークを提案する。
ネットワークは、いくつかの構造的革新を通じて、効率的に統合し、グローバルにマルチスケールの機能をモデル化する。
このデコーダ部では,マルチスケール・フィーチャー・リファインメント・デコーダが採用され,マルチスケール・スーパービジョン機構と修正モジュールを組み合わせることで,セグメンテーション精度と適応性を大幅に向上する。
論文 参考訳(メタデータ) (2024-12-22T09:16:00Z) - Feature Selection via Dynamic Graph-based Attention Block in MI-based EEG Signals [0.0]
脳-コンピュータインタフェース(BCI)技術は、脳信号を分析して人間とコンピュータの直接的な相互作用を可能にする。
脳波信号は、しばしば低信号対雑音比、生理的アーティファクト、および個々の変数の影響を受けており、異なる特徴を抽出する際の課題を表している。
また、運動画像(MI)に基づく脳波信号には、MI特性との相関が低い特徴が含まれており、深部モデルの重みがそれらの特徴に偏っている可能性がある。
論文 参考訳(メタデータ) (2024-10-31T00:53:29Z) - Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - C-MELT: Contrastive Enhanced Masked Auto-Encoders for ECG-Language Pre-Training [10.088785685439134]
本稿では,コントラッシブマスクを用いた自動エンコーダアーキテクチャを用いて,ECGとテキストデータを事前学習するフレームワークであるC-MELTを提案する。
C-MELTは、生成性の強さと識別能力の強化を一意に組み合わせて、堅牢なクロスモーダル表現を実現する。
論文 参考訳(メタデータ) (2024-10-03T01:24:09Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
深層学習技術を用いた医用画像超解像(SR)再構成は、病変解析を強化し、診断効率と精度を向上させるために医師を支援する。
既存のディープラーニングベースのSR手法は、これらのモデルの表現能力を本質的に制限する畳み込みニューラルネットワーク(CNN)に依存している。
画像特徴抽出に複数の畳み込み演算子特徴抽出モジュール(MCO)を用いるAネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T06:14:22Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
自己注意モジュール(SAM)は、異なる層にまたがる強い相関した注意マップを生成する。
Dense-and-Implicit Attention (DIA)はSAMをレイヤ間で共有し、長期間のメモリモジュールを使用する。
我々のシンプルで効果的なDIAは、様々なネットワークバックボーンを一貫して拡張できます。
論文 参考訳(メタデータ) (2022-10-27T13:24:08Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
HSI再構成のための高分解能デュアルドメイン学習ネットワーク(HDNet)を提案する。
一方、高効率な特徴融合によるHR空間スペクトルアテンションモジュールは、連続的かつ微細な画素レベルの特徴を提供する。
一方、HSI再構成のために周波数領域学習(FDL)を導入し、周波数領域の差を狭める。
論文 参考訳(メタデータ) (2022-03-04T06:37:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。