MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework
- URL: http://arxiv.org/abs/2406.17248v3
- Date: Wed, 10 Jul 2024 12:53:46 GMT
- Title: MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework
- Authors: Xusheng Xu, Jiangyu Cui, Zidong Cui, Runhong He, Qingyu Li, Xiaowei Li, Yanling Lin, Jiale Liu, Wuxin Liu, Jiale Lu, Maolin Luo, Chufan Lyu, Shijie Pan, Mosharev Pavel, Runqiu Shu, Jialiang Tang, Ruoqian Xu, Shu Xu, Kang Yang, Fan Yu, Qingguo Zeng, Haiying Zhao, Qiang Zheng, Junyuan Zhou, Xu Zhou, Yikang Zhu, Zuoheng Zou, Abolfazl Bayat, Xi Cao, Wei Cui, Zhendong Li, Guilu Long, Zhaofeng Su, Xiaoting Wang, Zizhu Wang, Shijie Wei, Re-Bing Wu, Pan Zhang, Man-Hong Yung,
- Abstract summary: We introduce MindSpore Quantum, a pioneering hybrid quantum-classical framework with a primary focus on noisy intermediate-scale quantum (NISQ) algorithms.
In addition to the core framework, we introduce QuPack, a meticulously crafted quantum computing acceleration engine.
- Score: 20.585698216552892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce MindSpore Quantum, a pioneering hybrid quantum-classical framework with a primary focus on the design and implementation of noisy intermediate-scale quantum (NISQ) algorithms. Leveraging the robust support of MindSpore, an advanced open-source deep learning training/inference framework, MindSpore Quantum exhibits exceptional efficiency in the design and training of variational quantum algorithms on both CPU and GPU platforms, delivering remarkable performance. Furthermore, this framework places a strong emphasis on enhancing the operational efficiency of quantum algorithms when executed on real quantum hardware. This encompasses the development of algorithms for quantum circuit compilation and qubit mapping, crucial components for achieving optimal performance on quantum processors. In addition to the core framework, we introduce QuPack, a meticulously crafted quantum computing acceleration engine. QuPack significantly accelerates the simulation speed of MindSpore Quantum, particularly in variational quantum eigensolver (VQE), quantum approximate optimization algorithm (QAOA), and tensor network simulations, providing astonishing speed. This combination of cutting-edge technologies empowers researchers and practitioners to explore the frontiers of quantum computing with unprecedented efficiency and performance.
Related papers
- Quantum Circuit Synthesis and Compilation Optimization: Overview and Prospects [0.0]
In this survey, we explore the feasibility of an integrated design and optimization scheme that spans from the algorithmic level to quantum hardware, combining the steps of logic circuit design and compilation optimization.
Leveraging the exceptional cognitive and learning capabilities of AI algorithms, one can reduce manual design costs, enhance the precision and efficiency of execution, and facilitate the implementation and validation of the superiority of quantum algorithms on hardware.
arXiv Detail & Related papers (2024-06-30T15:50:10Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Efficient Quantum Modular Arithmetics for the ISQ Era [0.0]
This study presents an array of quantum circuits, each precision-engineered for modular arithmetic functions.
We provide a theoretical framework and practical implementations in the PennyLane quantum software.
arXiv Detail & Related papers (2023-11-14T21:34:39Z) - Quantum Algorithm Cards: Streamlining the development of hybrid
classical-quantum applications [0.0]
The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains.
The ability of quantum computers to scale computations implies better performance and efficiency for certain algorithmic tasks than current computers provide.
To gain benefit from such improvement, quantum computers must be integrated with existing software systems, a process that is not straightforward.
arXiv Detail & Related papers (2023-10-04T06:02:59Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.