Compilation, Optimization, Error Mitigation, and Machine Learning in Quantum Algorithms
- URL: http://arxiv.org/abs/2506.15760v1
- Date: Wed, 18 Jun 2025 14:56:16 GMT
- Title: Compilation, Optimization, Error Mitigation, and Machine Learning in Quantum Algorithms
- Authors: Shuangbao Paul Wang, Jianzhou Mao, Eric Sakk,
- Abstract summary: This paper discusses the compilation, optimization, and error mitigation of quantum algorithms.<n>Quantum algorithms running on a hybrid platform with QPU and CPU/GPU take advantage of existing high-performance computing power with quantum-enabled exponential speedups.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper discusses the compilation, optimization, and error mitigation of quantum algorithms, essential steps to execute real-world quantum algorithms. Quantum algorithms running on a hybrid platform with QPU and CPU/GPU take advantage of existing high-performance computing power with quantum-enabled exponential speedups. The proposed approximate quantum Fourier transform (AQFT) for quantum algorithm optimization improves the circuit execution on top of an exponential speed-ups the quantum Fourier transform has provided.
Related papers
- Runtime Quantum Advantage with Digital Quantum Optimization [36.136619420474766]
bias-field digitized counterdiabatic quantum optimization (BF-DCQO) algorithm on IBM's 156-qubit devices.<n>We suitably select problem instances that are challenging for classical methods, running in fractions of minutes even with multicore processors.<n>Our results indicate that available digital quantum processors, when combined with specific-purpose quantum algorithms, exhibit a runtime quantum advantage even in the absence of quantum error correction.
arXiv Detail & Related papers (2025-05-13T15:24:17Z) - Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
We present a new method for calculating expectation values of operators that can be expressed as a linear combination of unitary (LCU) operators.<n>This method is general for any quantum algorithm and is of particular interest in the acceleration of variational quantum algorithms.
arXiv Detail & Related papers (2025-03-03T17:15:23Z) - MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework [20.585698216552892]
We introduce MindSpore Quantum, a pioneering hybrid quantum-classical framework with a primary focus on noisy intermediate-scale quantum (NISQ) algorithms.
In addition to the core framework, we introduce QuPack, a meticulously crafted quantum computing acceleration engine.
arXiv Detail & Related papers (2024-06-25T03:28:40Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
Two promising areas of quantum algorithms are quantum machine learning and quantum optimization.
Motivated by recent progress in quantum technologies and in particular quantum software, research and industrial communities have been trying to discover new applications of quantum algorithms.
arXiv Detail & Related papers (2021-12-22T06:19:36Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum optimal control with quantum computers: an hybrid algorithm
featuring machine learning optimization [0.0]
We develop an hybrid quantum-classical algorithm to solve an optimal population transfer problem for a molecule subject to a laser pulse.
The evolution of the molecular wavefunction under the laser pulse is simulated on a quantum computer, while the optimal pulse is iteratively shaped via a machine learning (evolutionary) algorithm.
arXiv Detail & Related papers (2020-07-01T10:13:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.