論文の概要: Unifying methods for optimal control in non-Markovian quantum systems via process tensors
- arxiv url: http://arxiv.org/abs/2406.17719v1
- Date: Tue, 25 Jun 2024 17:09:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:31:24.732123
- Title: Unifying methods for optimal control in non-Markovian quantum systems via process tensors
- Title(参考訳): 非マルコフ量子系におけるプロセステンソルによる最適制御の統一法
- Authors: Carlos Ortega-Taberner, Eoin O'Neill, Eoin Butler, Gerald E. Fux, P. R. Eastham,
- Abstract要約: 非マルコフ開系をシミュレートする複数の方法があり、環境を多くのアクティブな自由度に効果的に還元する。
ここでは、これらの手法のいくつかを行列積演算の形でプロセステンソルの項で表現できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The large dimensionality of environments is the limiting factor in applying optimal control to open quantum systems beyond Markovian approximations. Multiple methods exist to simulate non-Markovian open systems which effectively reduce the environment to a number of active degrees of freedom. Here we show that several of these methods can be expressed in terms of a process tensor in the form of a matrix-product-operator, which serves as a unifying framework to show how they can be used in optimal control, and to compare their performance. The matrix-product-operator form provides a general scheme for computing gradients using back propagation, and allows the efficiency of the different methods to be compared via the bond dimensions of their respective process tensors.
- Abstract(参考訳): 環境の大きな次元性は、マルコフ近似を超えた開量子系に最適制御を適用する際の制限因子である。
非マルコフ開系をシミュレートする複数の方法があり、環境を多くのアクティブな自由度に効果的に還元する。
ここでは,これらの手法のいくつかを行列積演算子(行列積演算子)という形でプロセステンソルで表現できることを示す。
行列積演算形式は、バック伝搬を用いて勾配を計算するための一般的なスキームを提供し、それぞれのプロセステンソルの結合次元を介して異なる方法の効率を比較できるようにする。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Adaptive variational low-rank dynamics for open quantum systems [0.0]
低エントロピーシステムの効率的なシミュレーションのための新しいモデル非依存手法を提案する。
本研究は,本手法の汎用性と効率性を強調し,多種多様なシステムに適用可能であることを示す。
論文 参考訳(メタデータ) (2023-12-21T08:57:41Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
グラディエントアセンセントパルス工学(GRAPE)法は量子制御の最適化に広く用いられている。
我々は、コヒーレント制御と非コヒーレント制御の両方によって駆動されるオープン量子系の目的関数を最適化するために、GRAPE法を採用する。
状態-状態遷移問題に対する数値シミュレーションによりアルゴリズムの効率を実証する。
論文 参考訳(メタデータ) (2023-07-17T13:37:18Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
本稿では,ハイパーキューブやトーラス上のスムーズな関数を扱う証明書を用いた非キューブ最適化手法を提案する。
スペクトルの減衰に固有の対象関数の正則性を活用することにより、正確な証明を取得し、高度で強力なニューラルネットワークを活用することができる。
論文 参考訳(メタデータ) (2023-06-26T09:42:59Z) - Efficient and Flexible Sublabel-Accurate Energy Minimization [62.50191141358778]
データと滑らかさの項からなるエネルギー関数のクラスを最小化する問題に対処する。
既存の連続最適化手法は、サブラベル精度の高い解を見つけることができるが、大きなラベル空間では効率が良くない。
本稿では,連続モデルと離散モデルの両方の最適特性を利用する効率的なサブラベル精度手法を提案する。
論文 参考訳(メタデータ) (2022-06-20T06:58:55Z) - Safe Real-Time Optimization using Multi-Fidelity Gaussian Processes [0.0]
本稿では,不確実なプロセスのシステムミスマッチを克服するリアルタイム最適化手法を提案する。
提案方式では, 既知のプロセスモデルをエミュレートする2つのガウス過程と, 測定による真のシステムを用いる。
論文 参考訳(メタデータ) (2021-11-10T09:31:10Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - A Discrete Variational Derivation of Accelerated Methods in Optimization [68.8204255655161]
最適化のための異なる手法を導出できる変分法を導入する。
我々は1対1の対応において最適化手法の2つのファミリを導出する。
自律システムのシンプレクティシティの保存は、ここでは繊維のみに行われる。
論文 参考訳(メタデータ) (2021-06-04T20:21:53Z) - Riemannian optimization of isometric tensor networks [0.0]
等長線のテンソルネットワークを最適化するために、勾配に基づく最適化手法が、例えば1次元量子ハミルトニアンの基底状態を表すためにどのように用いられるかを示す。
これらの手法を無限MPSとMERAの文脈に適用し、これまでに知られていた最適化手法よりも優れたベンチマーク結果を示す。
論文 参考訳(メタデータ) (2020-07-07T17:19:05Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
本研究は,流体力学系の最適化と制御を支援するための深部強化学習(DRL)技術の能力を評価する。
原型ポリシー最適化(PPO)アルゴリズムの新たな"退化"バージョンを組み合わせることで、学習エピソード当たり1回だけシステムを最適化するニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-06-04T16:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。