論文の概要: Probing the effects of broken symmetries in machine learning
- arxiv url: http://arxiv.org/abs/2406.17747v1
- Date: Tue, 25 Jun 2024 17:34:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:31:24.696002
- Title: Probing the effects of broken symmetries in machine learning
- Title(参考訳): 機械学習における破壊対称性の効果の探索
- Authors: Marcel F. Langer, Sergey N. Pozdnyakov, Michele Ceriotti,
- Abstract要約: 我々は,非対称モデルがデータから対称性を学習できることを示す。
我々は、対称性の破れによって、直接的または間接的に影響を受けやすい物理的観測物に特に焦点を合わせ、モデルが補間的でバルクな状態で使用されるとき、無視可能な結果を見つける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symmetry is one of the most central concepts in physics, and it is no surprise that it has also been widely adopted as an inductive bias for machine-learning models applied to the physical sciences. This is especially true for models targeting the properties of matter at the atomic scale. Both established and state-of-the-art approaches, with almost no exceptions, are built to be exactly equivariant to translations, permutations, and rotations of the atoms. Incorporating symmetries -- rotations in particular -- constrains the model design space and implies more complicated architectures that are often also computationally demanding. There are indications that non-symmetric models can easily learn symmetries from data, and that doing so can even be beneficial for the accuracy of the model. We put a model that obeys rotational invariance only approximately to the test, in realistic scenarios involving simulations of gas-phase, liquid, and solid water. We focus specifically on physical observables that are likely to be affected -- directly or indirectly -- by symmetry breaking, finding negligible consequences when the model is used in an interpolative, bulk, regime. Even for extrapolative gas-phase predictions, the model remains very stable, even though symmetry artifacts are noticeable. We also discuss strategies that can be used to systematically reduce the magnitude of symmetry breaking when it occurs, and assess their impact on the convergence of observables.
- Abstract(参考訳): 対称性は物理学において最も中心的な概念の1つであり、物理科学に適用された機械学習モデルの帰納的バイアスとして広く採用されていることは驚くにあたらない。
これは特に原子スケールでの物質の性質を対象とするモデルに当てはまる。
確立されたアプローチと最先端のアプローチは、ほとんど例外なく、原子の翻訳、置換、回転と全く同じであるように構築されている。
対称性(特に回転)を組み込むことは、モデル設計空間を制約し、しばしば計算的に要求されるより複雑なアーキテクチャを暗示する。
非対称モデルがデータから対称性を習得し易いことや、それを行うことがモデルの正確性に有用であることを示している。
気体相, 液体, 固体水のシミュレーションを含む現実的なシナリオにおいて, 回転不変性にほぼ従うモデルを構築した。
我々は、対称性の破れによって、直接的または間接的に影響を受けやすい物理的観測物に特に焦点を合わせ、モデルが補間的でバルクな状態で使用されるとき、無視可能な結果を見つける。
ガス相の外挿予測においても、対称性のアーチファクトが顕著であるにもかかわらず、モデルは非常に安定である。
また, 対称性の破れの程度を体系的に低減し, 観測対象の収束への影響を評価するための戦略についても論じる。
関連論文リスト
- A Generative Model of Symmetry Transformations [44.87295754993983]
我々はデータの近似対称性を明示的に捉えることを目的とした生成モデルを構築した。
我々は、アフィンおよび色変換の下で対称性を捕捉する能力を実証的に実証した。
論文 参考訳(メタデータ) (2024-03-04T11:32:18Z) - Morphological Symmetries in Robotics [45.32599550966704]
形態的対称性は ロボットの形態の固有の特性です
これらの対称性は、ロボットの状態空間とセンサーの測定にまで拡張される。
データ駆動型手法では, 機械学習モデルのサンプル効率と一般化を, モルフォロジー対称性により向上させることができることを示す。
解析手法の文脈では、ロボットの力学を低次元独立力学の重ね合わせに分解するために抽象調和解析を用いる。
論文 参考訳(メタデータ) (2024-02-23T17:21:21Z) - Equivariant Transformer is all you need [0.0]
自己学習モンテカルロに対称性同変注意を導入する。
線形モデルに対する受理率の低さを克服し,Transformer を用いた大規模言語モデルのように,受理率のスケーリング法則を観察する。
論文 参考訳(メタデータ) (2023-10-20T01:57:03Z) - Symmetry Induces Structure and Constraint of Learning [0.0]
機械学習モデルの学習行動に影響を及ぼすか、決定しないかにかかわらず、損失関数対称性の重要性を明らかにする。
ディープラーニングにおけるミラー対称性の一般的な例としては、再スケーリング、回転、置換対称性がある。
ニューラルネットワークにおける可塑性の喪失や様々な崩壊現象などの興味深い現象を理論的枠組みで説明できることを示す。
論文 参考訳(メタデータ) (2023-09-29T02:21:31Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Symmetry and Complexity in Object-Centric Deep Active Inference Models [4.298360054690217]
生成モデルの潜在状態空間における特定の対象の固有対称性が、深いアクティブな推論の下で学習されることを示す。
特に,対象中心の表現に焦点をあて,エージェントが視点を移すにつれて,新しい対象の視点を予測するために画素から学習する。
論文 参考訳(メタデータ) (2023-04-14T10:21:26Z) - The Surprising Effectiveness of Equivariant Models in Domains with
Latent Symmetry [6.716931832076628]
領域対称性と正確に一致しない対称性制約を課すことは、環境における真の対称性を学ぶのに非常に有用であることを示す。
ロボット操作・制御問題における教師付き学習と強化学習の両方において,同変モデルが潜在対称性を持つ領域における非同変手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-11-16T21:51:55Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Approximately Equivariant Networks for Imperfectly Symmetric Dynamics [24.363954435050264]
我々のモデルは、シミュレーションされた乱流領域と実世界のマルチストリームジェット流の両方において、対称性バイアスのないベースラインと過度に厳密な対称性を持つベースラインの両方より優れていることが判明した。
論文 参考訳(メタデータ) (2022-01-28T07:31:28Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Inverse Learning of Symmetries [71.62109774068064]
2つの潜在部分空間からなるモデルで対称性変換を学ぶ。
我々のアプローチは、情報ボトルネックと連続的な相互情報正規化器の組み合わせに基づいています。
我々のモデルは, 人工的および分子的データセットにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-02-07T13:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。