Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis
- URL: http://arxiv.org/abs/2406.18114v2
- Date: Mon, 08 Jul 2024 12:02:19 GMT
- Title: Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis
- Authors: Lukas Bahr, Christoph Wehner, Judith Wewerka, José Bittencourt, Ute Schmid, Rüdiger Daub,
- Abstract summary: Failure mode and effects analysis (FMEA) is a critical tool for mitigating potential failures.
Large language models (LLMs) offer novel prospects for fine-tuning on custom datasets for reasoning within FMEA contexts.
Retrieval-augmented generation (RAG) approaches aim to fill this gap.
- Score: 1.8849131083278732
- License:
- Abstract: Failure mode and effects analysis (FMEA) is a critical tool for mitigating potential failures, particular during ramp-up phases of new products. However, its effectiveness is often limited by the missing reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for fine-tuning on custom datasets for reasoning within FMEA contexts. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this idea, we propose to advance the non-parametric data store with a knowledge graph (KG). By enhancing the RAG framework with a KG, our objective is to leverage analytical and semantic question-answering capabilities on FMEA data. This paper contributes by presenting a new ontology for FMEA observations, an algorithm for creating vector embeddings from the FMEA KG, and a KG enhanced RAG framework. Our approach is validated through a human study and we measure the performance of the context retrieval recall and precision.
Related papers
- Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions.
Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline.
We investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs.
arXiv Detail & Related papers (2024-11-25T06:48:38Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward hacking, also termed reward overoptimization, remains a critical challenge.
We propose a framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective.
We show that InfoRM's overoptimization detection mechanism is not only effective but also robust across a broad range of datasets.
arXiv Detail & Related papers (2024-02-14T17:49:07Z) - Word-Level ASR Quality Estimation for Efficient Corpus Sampling and
Post-Editing through Analyzing Attentions of a Reference-Free Metric [5.592917884093537]
The potential of quality estimation (QE) metrics is introduced and evaluated as a novel tool to enhance explainable artificial intelligence (XAI) in ASR systems.
The capabilities of the NoRefER metric are explored in identifying word-level errors to aid post-editors in refining ASR hypotheses.
arXiv Detail & Related papers (2024-01-20T16:48:55Z) - A Guide for Practical Use of ADMG Causal Data Augmentation [0.0]
Causal data augmentation strategies have been pointed out as a solution to handle these challenges.
This paper experimentally analyzed the ADMG causal augmentation method considering different settings.
arXiv Detail & Related papers (2023-04-03T09:31:13Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Active Feature Acquisition with Generative Surrogate Models [11.655069211977464]
In this work, we consider models that perform active feature acquisition (AFA) and query the environment for unobserved features.
Our work reformulates the Markov decision process (MDP) that underlies the AFA problem as a generative modeling task.
We propose learning a generative surrogate model ( GSM) that captures the dependencies among input features to assess potential information gain from acquisitions.
arXiv Detail & Related papers (2020-10-06T02:10:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.