Vision Meets Language: A RAG-Augmented YOLOv8 Framework for Coffee Disease Diagnosis and Farmer Assistance
- URL: http://arxiv.org/abs/2505.21544v1
- Date: Sat, 24 May 2025 18:51:34 GMT
- Title: Vision Meets Language: A RAG-Augmented YOLOv8 Framework for Coffee Disease Diagnosis and Farmer Assistance
- Authors: Semanto Mondal,
- Abstract summary: This study introduces a novel AI-based precision agriculture system that uses Retrieval Augmented Generation (RAG) to provide context-aware diagnoses and natural language processing (NLP) and YOLOv8 for crop disease detection.<n>The system aims to tackle major issues with large language models (LLMs), especially hallucinations and allows for adaptive treatment plans and real-time disease detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a social being, we have an intimate bond with the environment. A plethora of things in human life, such as lifestyle, health, and food are dependent on the environment and agriculture. It comes under our responsibility to support the environment as well as agriculture. However, traditional farming practices often result in inefficient resource use and environmental challenges. To address these issues, precision agriculture has emerged as a promising approach that leverages advanced technologies to optimise agricultural processes. In this work, a hybrid approach is proposed that combines the three different potential fields of model AI: object detection, large language model (LLM), and Retrieval-Augmented Generation (RAG). In this novel framework, we have tried to combine the vision and language models to work together to identify potential diseases in the tree leaf. This study introduces a novel AI-based precision agriculture system that uses Retrieval Augmented Generation (RAG) to provide context-aware diagnoses and natural language processing (NLP) and YOLOv8 for crop disease detection. The system aims to tackle major issues with large language models (LLMs), especially hallucinations and allows for adaptive treatment plans and real-time disease detection. The system provides an easy-to-use interface to the farmers, which they can use to detect the different diseases related to coffee leaves by just submitting the image of the affected leaf the model will detect the diseases as well as suggest potential remediation methodologies which aim to lower the use of pesticides, preserving livelihoods, and encouraging environmentally friendly methods. With an emphasis on scalability, dependability, and user-friendliness, the project intends to improve RAG-integrated object detection systems for wider agricultural applications in the future.
Related papers
- AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock [77.95897723270453]
Crops, fisheries and livestock form the backbone of global food production, essential to feed the ever-growing global population.<n> Addressing these issues requires efficient, accurate, and scalable technological solutions, highlighting the importance of artificial intelligence (AI)<n>This survey presents a systematic and thorough review of more than 200 research works covering conventional machine learning approaches, advanced deep learning techniques, and recent vision-language foundation models.
arXiv Detail & Related papers (2025-07-29T17:59:48Z) - A Comprehensive Review of Diffusion Models in Smart Agriculture: Progress, Applications, and Challenges [19.536255277516005]
Diffusion models have demonstrated potential in agricultural image processing, data augmentation, and remote sensing analysis.<n>Compared to traditional generative adversarial networks (GANs), diffusion models exhibit greater training stability and superior image generation quality.<n>This paper reviews recent advancements in the application of diffusion models within agriculture, focusing on their roles in crop disease and pest detection, remote sensing image enhancement, crop growth prediction, and agricultural resource management.
arXiv Detail & Related papers (2025-07-24T12:52:32Z) - An efficient plant disease detection using transfer learning approach [0.0]
Plant diseases pose significant challenges to farmers and the agricultural sector at large.<n>This study proposed a system designed to identify and monitor plant diseases using a transfer learning approach.<n>The system is able to accurately detect the presence of Bacteria, Fungi and Viral diseases such as Powdery Mildew, Angular Leaf Spot, Early blight and Tomato mosaic virus.
arXiv Detail & Related papers (2025-06-28T13:47:27Z) - A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis [5.006697347461899]
We present the crop disease domain multimodal dataset, a pioneering resource designed to advance the field of agricultural research.<n>The dataset comprises 137,000 images of various crop diseases, accompanied by 1 million question-answer pairs that span a broad spectrum of agricultural knowledge.<n>We demonstrate the utility of the dataset by finetuning state-of-the-art multimodal models, showcasing significant improvements in crop disease diagnosis.
arXiv Detail & Related papers (2025-03-10T06:37:42Z) - Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases [49.782064512495495]
We construct the first multimodal instruction-following dataset in the agricultural domain.<n>This dataset covers over 221 types of pests and diseases with approximately 400,000 data entries.<n>We propose a knowledge-infused training method to develop Agri-LLaVA, an agricultural multimodal conversation system.
arXiv Detail & Related papers (2024-12-03T04:34:23Z) - A Semantic Segmentation Approach on Sweet Orange Leaf Diseases Detection Utilizing YOLO [0.0]
This research introduces an advanced method for diagnosing diseases in sweet orange leaves by utilising advanced artificial intelligence models like YOLOv8.
YOLOv8 is recognized for its rapid and precise performance, while VIT is acknowledged for its detailed feature extraction abilities.
During both the training and validation stages, YOLOv8 exhibited a perfect accuracy of 80.4%, while VIT achieved an accuracy of 99.12%.
arXiv Detail & Related papers (2024-09-10T17:40:46Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
optimisation is required for insect production to realise its full potential.
This can be by targeted improvement of traits of interest through selective breeding.
This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology.
arXiv Detail & Related papers (2024-06-26T07:50:58Z) - Overcoming LLM Challenges using RAG-Driven Precision in Coffee Leaf Disease Remediation [0.0]
This research introduces an innovative AI-driven precision agriculture system, leveraging YOLOv8 for disease identification and Retrieval Augmented Generation (RAG) for context-aware diagnosis.
The system integrates sophisticated object detection techniques with language models to address the inherent constraints associated with Large Language Models (LLMs)
arXiv Detail & Related papers (2024-05-02T14:19:25Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Leaf-Based Plant Disease Detection and Explainable AI [16.128084819516715]
The agricultural sector plays an essential role in the economic growth of a country.
Plant Disease is one of the significant factors affecting the agricultural sector.
Researchers have explored many applications based on AI and Machine Learning techniques to detect plant diseases.
arXiv Detail & Related papers (2023-12-17T03:40:12Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation [42.39035033967183]
Service robots need a real-time perception system that understands their surroundings and identifies their targets in the wild.
Existing methods, however, often fall short in generalizing to new crops and environmental conditions.
We propose a novel approach to enhance domain generalization using knowledge distillation.
arXiv Detail & Related papers (2023-04-03T14:28:29Z) - DeepG2P: Fusing Multi-Modal Data to Improve Crop Production [1.7406327893433846]
We present a Natural Language Processing-based neural network architecture to process the G, E and M inputs and their interactions.
We show that by modeling DNA as natural language, our approach performs better than previous approaches when tested for new environments.
arXiv Detail & Related papers (2022-11-11T03:32:44Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.