The Influence of Experimental Imperfections on Photonic GHZ State Generation
- URL: http://arxiv.org/abs/2406.18257v1
- Date: Wed, 26 Jun 2024 11:09:23 GMT
- Title: The Influence of Experimental Imperfections on Photonic GHZ State Generation
- Authors: Fabian Wiesner, Helen M. Chrzanowski, Gregor Pieplow, Tim Schröder, Anna Pappa, Janik Wolters,
- Abstract summary: We investigate the influence of photon loss, multi-photon terms and photon distinguishability on the generation of photonic 3-partite GHZ states via established fusion protocols.
We show that different types of imperfections are dominant with respect to the fidelity and generation success probability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the advantages of photonic quantum computing, including direct compatibility with communication, are apparent, several imperfections such as loss and distinguishability presently limit actual implementations. These imperfections are unlikely to be completely eliminated, and it is therefore beneficial to investigate which of these are the most dominant and what is achievable under their presence. In this work, we provide an in-depth investigation of the influence of photon loss, multi-photon terms and photon distinguishability on the generation of photonic 3-partite GHZ states via established fusion protocols. We simulate the generation process for SPDC and solid-state-based single-photon sources using realistic parameters and show that different types of imperfections are dominant with respect to the fidelity and generation success probability. Our results indicate what are the dominant imperfections for the different photon sources and in which parameter regimes we can hope to implement photonic quantum computing in the near future.
Related papers
- Photon loss effects on light-mediated non-Gaussian entangled Bose-Einstein condensates projecting with different photon measurement outcomes [3.800280589094775]
We study how the effects of photon measurement impact the entanglement when photon loss decoherence is included.
We demonstrate that varying outcomes of photon number measurements lead to the generation of distinct entangled states.
We find that using the Hofmann-Takeuchi and Duan-Giedke-Cirac-Zoller criterion provides advantages in entanglement detection.
arXiv Detail & Related papers (2024-05-12T03:57:51Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Two-Photon Interference of Single Photons from Dissimilar Sources [0.0]
Entanglement swapping and heralding are at the heart of many protocols for distributed quantum information.
We develop a theoretical description of pulsed two-photon interference of photons from dissimilar sources.
We study their dependence on critical system parameters such as quantum state lifetime and frequency detuning.
arXiv Detail & Related papers (2022-02-10T07:51:27Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Integrated quantum photonics with silicon carbide: challenges and
prospects [0.0]
Quantum computing protocols place strict limits on the acceptable photon losses in the system.
Most materials that host spin defects are challenging to process.
Silicon carbide (SiC) is well-suited to bridge the classical-quantum photonics gap.
arXiv Detail & Related papers (2020-10-29T15:44:13Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Spatial Mode Correction of Single Photons using Machine Learning [1.8086378019947618]
We exploit the self-learning and self-evolving features of artificial neural networks to correct the complex spatial profile of distorted Laguerre-Gaussian modes at the single-photon level.
Our results have important implications for real-time turbulence correction of structured photons and single-photon images.
arXiv Detail & Related papers (2020-06-14T01:25:17Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.