論文の概要: On Reducing Activity with Distillation and Regularization for Energy Efficient Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2406.18350v1
- Date: Wed, 26 Jun 2024 13:51:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 13:19:36.066591
- Title: On Reducing Activity with Distillation and Regularization for Energy Efficient Spiking Neural Networks
- Title(参考訳): エネルギー効率の良いスパイクニューラルネットワークにおける蒸留と正規化による低減活動について
- Authors: Thomas Louis, Benoit Miramond, Alain Pegatoquet, Adrien Girard,
- Abstract要約: スパイクニューラルネットワーク(SNN)への関心は着実に増加しており、フォーマルニューラルネットワーク(FNN)に代わるエネルギー効率の高い代替品として期待されている。
本稿では,SNN訓練における知識蒸留(KD)を活用して,性能とスパイク活動のトレードオフを最適化することを提案する。
- 参考スコア(独自算出の注目度): 0.19999259391104385
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Interest in spiking neural networks (SNNs) has been growing steadily, promising an energy-efficient alternative to formal neural networks (FNNs), commonly known as artificial neural networks (ANNs). Despite increasing interest, especially for Edge applications, these event-driven neural networks suffered from their difficulty to be trained compared to FNNs. To alleviate this problem, a number of innovative methods have been developed to provide performance more or less equivalent to that of FNNs. However, the spiking activity of a network during inference is usually not considered. While SNNs may usually have performance comparable to that of FNNs, it is often at the cost of an increase of the network's activity, thus limiting the benefit of using them as a more energy-efficient solution. In this paper, we propose to leverage Knowledge Distillation (KD) for SNNs training with surrogate gradient descent in order to optimize the trade-off between performance and spiking activity. Then, after understanding why KD led to an increase in sparsity, we also explored Activations regularization and proposed a novel method with Logits Regularization. These approaches, validated on several datasets, clearly show a reduction in network spiking activity (-26.73% on GSC and -14.32% on CIFAR-10) while preserving accuracy.
- Abstract(参考訳): スパイクニューラルネットワーク(SNN)への関心は着実に高まり、フォーマルニューラルネットワーク(FNN)に代わるエネルギー効率の高い代替品として期待されている。
特にエッジアプリケーションに対する関心は高まっているが、これらのイベント駆動ニューラルネットワークは、FNNと比較してトレーニングが困難であった。
この問題を軽減するために、FNNに匹敵する性能を提供するために、多くの革新的な方法が開発されている。
しかし、推論中のネットワークのスパイク活性は考慮されないことが多い。
SNNは通常、FNNに匹敵する性能を持つが、ネットワークの活動の増加のコストがかかるため、よりエネルギー効率の良いソリューションとして使用するメリットが制限されることが多い。
本稿では,SNN訓練における知識蒸留(KD)を活用して,性能とスパイク活動のトレードオフを最適化する手法を提案する。
その後,KDが空間性の向上に繋がった理由を理解するとともに,活性化正則化を探求し,ロジス正則化を用いた新しい手法を提案する。
これらのアプローチはいくつかのデータセットで検証され、精度を維持しながらネットワークスパイ活動の減少(GSCでは-26.73%、CIFAR-10では-14.32%)が明らかに示されている。
関連論文リスト
- Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
我々は,AIタスクにおいて,ANNのアクティベーション値とSNNのスパイク時間とのほぼ完全なマッピングを実現することができることを示す。
この研究は、電力制約のあるエッジコンピューティングプラットフォームに超低消費電力のTTFSベースのSNNをデプロイする方法を舗装している。
論文 参考訳(メタデータ) (2023-10-23T14:26:16Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
従来の人工ニューラルネットワーク(ANN)の代替として、スパイキングニューラルネットワーク(SNN)が注目を集めている。
本稿では,SNNにおけるスキップ接続の影響について検討し,ANNからSNNへのモデル適応を行うハイパーパラメータ最適化手法を提案する。
本研究では,SNNの位置,タイプ,回数を最適化することで,SNNの精度と効率を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-03-23T07:57:32Z) - MT-SNN: Enhance Spiking Neural Network with Multiple Thresholds [0.0]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワーク(ANN)に代わる有望なエネルギー効率の代替品である
本稿では,バイナライズされたアクティベーションによる精度損失を軽減するために,Multiple Threshold(MT)アプローチを提案する。
論文 参考訳(メタデータ) (2023-03-20T14:04:50Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
スパイキングニューラルネットワーク(SNN)は、その生物学的妥当性とニューロモルフィックチップの高エネルギー効率により、非常に重要視されている。
ほとんどの既存の方法は、ANNsとSNNsの違いを無視するSNNsに人工ニューラルネットワーク(ANNs)のプルーニングアプローチを直接適用する。
本稿では,ネットワーク構造を無訓練でシームレスに最適化可能な,snsの接続性と重み付けの合同学習アルゴリズムgradle rewiring (gradr)を提案する。
論文 参考訳(メタデータ) (2021-05-11T10:05:53Z) - Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks [1.8515971640245998]
スパイクニューラルネットワーク(SNN)は、より生物学的に実行可能で、より強力なニューラルネットワークモデルとして研究されている。
本稿では、新規なサロゲート勾配と、チューナブルおよび適応性スピッキングニューロンの繰り返しネットワークがSNNの最先端を生み出す様子を示す。
論文 参考訳(メタデータ) (2021-03-12T10:27:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z) - T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding [26.654533157221973]
本稿では,カーネルベースの動的しきい値とデンドライトを用いて,深層SNNにタイム・ツー・ファースト・スパイク・コーディングを組み込むことによって,その欠点を克服する手法を提案する。
提案手法は,バースト符号化法と比較して,推定遅延とスパイク回数を22%,1%以下に削減できる。
論文 参考訳(メタデータ) (2020-03-26T04:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。