論文の概要: Advancing operational PM2.5 forecasting with dual deep neural networks (D-DNet)
- arxiv url: http://arxiv.org/abs/2406.19154v1
- Date: Thu, 27 Jun 2024 13:14:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:08:07.752036
- Title: Advancing operational PM2.5 forecasting with dual deep neural networks (D-DNet)
- Title(参考訳): デュアルディープニューラルネットワーク(D-DNet)による運用PM2.5予測の高速化
- Authors: Shengjuan Cai, Fangxin Fang, Vincent-Henri Peuch, Mihai Alexe, Ionel Michael Navon, Yanghua Wang,
- Abstract要約: 本稿では,リアルタイム観測を効率的に統合するD-DNet予測とデータ同化システムを提案する。
D-DNetはPM2.5とAOD550のグローバルな運用予測に優れており、2019年全体を通して一貫した精度を維持している。
これは、Copernicus Atmosphere Monitoring Service (CAMS) 4D-Varの運用予測システムよりも明らかに高い効率を示す。
- 参考スコア(独自算出の注目度): 0.3848364262836075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: PM2.5 forecasting is crucial for public health, air quality management, and policy development. Traditional physics-based models are computationally demanding and slow to adapt to real-time conditions. Deep learning models show potential in efficiency but still suffer from accuracy loss over time due to error accumulation. To address these challenges, we propose a dual deep neural network (D-DNet) prediction and data assimilation system that efficiently integrates real-time observations, ensuring reliable operational forecasting. D-DNet excels in global operational forecasting for PM2.5 and AOD550, maintaining consistent accuracy throughout the entire year of 2019. It demonstrates notably higher efficiency than the Copernicus Atmosphere Monitoring Service (CAMS) 4D-Var operational forecasting system while maintaining comparable accuracy. This efficiency benefits ensemble forecasting, uncertainty analysis, and large-scale tasks.
- Abstract(参考訳): PM2.5予測は公衆衛生、大気管理、政策開発に不可欠である。
従来の物理学に基づくモデルは、計算的に要求され、リアルタイムな条件に適応するのに遅い。
ディープラーニングモデルは効率性を示すが、エラーの蓄積による時間経過とともに精度の低下に悩まされている。
これらの課題に対処するために、リアルタイムの観測を効率的に統合し、信頼性の高い運用予測を保証する、デュアルディープニューラルネットワーク(D-DNet)予測とデータ同化システムを提案する。
D-DNetはPM2.5とAOD550のグローバルな運用予測に優れており、2019年全体を通して一貫した精度を維持している。
これは、同等の精度を維持しながら、Copernicus Atmosphere Monitoring Service (CAMS) 4D-Varの運用予測システムよりも明らかに高い効率を示す。
この効率は、アンサンブル予測、不確実性分析、大規模タスクの恩恵を受ける。
関連論文リスト
- Evaluation of Tropical Cyclone Track and Intensity Forecasts from Artificial Intelligence Weather Prediction (AIWP) Models [0.6282171844772422]
4つのオープンソースAIWPモデルが検討されている(FourCastNetv1、FourCastNetv2-small、GraphCast-operational、Pangu-Weather)。
NHCモデルコンセンサスに対するAIWPモデルの貢献も評価した。
かなりの負の強度バイアスにもかかわらず、AIWPモデルは強度のコンセンサスに中立的な影響を与える。
論文 参考訳(メタデータ) (2024-09-08T22:58:46Z) - Regional data-driven weather modeling with a global stretched-grid [0.3804109677654105]
このモデルはグラフニューラルネットワークに基づいており、これは自然に任意のマルチレゾリューショングリッド構成を提供する。
このモデルは北欧の短距離気象予測に適用され、2.5km、時間分解能は6hと予測される。
このモデルは、競争力のある降水量や風速予測も生み出すが、極端な出来事を過小評価している。
論文 参考訳(メタデータ) (2024-09-04T17:31:20Z) - Uncertainty-aware segmentation for rainfall prediction post processing [0.7646713951724011]
日次累積降水量の予測を後処理するための不確実性を考慮した深層学習モデルについて検討する。
本研究では,様々な最先端モデルを比較し,よく知られたSDE-Netの変種を提案する。
その結果,すべてのディープラーニングモデルは,平均的ベースラインNWPソリューションよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-08-28T16:31:40Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - Nowcasting-Nets: Deep Neural Network Structures for Precipitation
Nowcasting Using IMERG [1.9860735109145415]
リカレントと畳み込み型ディープニューラルネットワーク構造を用いて、降水流の課題に対処する。
GPM (Global Precipitation Measurement, GPM) 統合マルチサテライトE(Multi-SatellitE Retrievals) を用いて、米国東部大陸の降水量データ(IMERG)を用いて、合計5つのモデルを訓練した。
また, 予測時間を最大1.5時間, フィードバックループアプローチを用いて4.5時間まで延長できるモデルについても検討した。
論文 参考訳(メタデータ) (2021-08-16T02:55:32Z) - A Novel Hybrid Framework for Hourly PM2.5 Concentration Forecasting
Using CEEMDAN and Deep Temporal Convolutional Neural Network [2.2175470459999636]
本研究では,適応雑音を伴う完全アンサンブル経験モード分解に基づくハイブリッド予測モデルを開発した。
提案したceemdan-deeptcnモデルの予測精度は,時系列モデル,ニューラルネットワーク,一般的なディープラーニングモデルと比較して高い値であることが確認された。
新しいモデルではPM2.5関連因子データパターンをモデル化し,PM2.5濃度を予測するための有望なツールとして利用できる。
論文 参考訳(メタデータ) (2020-12-07T15:22:01Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。