論文の概要: Human Modelling and Pose Estimation Overview
- arxiv url: http://arxiv.org/abs/2406.19290v1
- Date: Thu, 27 Jun 2024 16:04:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 13:38:31.405889
- Title: Human Modelling and Pose Estimation Overview
- Title(参考訳): 人体モデリングとポーズ推定の概観
- Authors: Pawel Knap,
- Abstract要約: 人間のモデリングとポーズ推定は、コンピュータビジョン、コンピュータグラフィックス、機械学習の交差点に立っている。
本稿では,この学際分野を網羅的に研究し,様々なアルゴリズム,方法論,実践的応用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human modelling and pose estimation stands at the crossroads of Computer Vision, Computer Graphics, and Machine Learning. This paper presents a thorough investigation of this interdisciplinary field, examining various algorithms, methodologies, and practical applications. It explores the diverse range of sensor technologies relevant to this domain and delves into a wide array of application areas. Additionally, we discuss the challenges and advancements in 2D and 3D human modelling methodologies, along with popular datasets, metrics, and future research directions. The main contribution of this paper lies in its up-to-date comparison of state-of-the-art (SOTA) human pose estimation algorithms in both 2D and 3D domains. By providing this comprehensive overview, the paper aims to enhance understanding of 3D human modelling and pose estimation, offering insights into current SOTA achievements, challenges, and future prospects within the field.
- Abstract(参考訳): 人間のモデリングとポーズ推定は、コンピュータビジョン、コンピュータグラフィックス、機械学習の交差点に立っている。
本稿では,この学際分野を網羅的に研究し,様々なアルゴリズム,方法論,実践的応用について検討する。
このドメインに関連するさまざまなセンサー技術を調査し、幅広いアプリケーション領域に展開する。
さらに、一般的なデータセット、メトリクス、将来の研究方向とともに、2次元および3次元の人体モデリング方法論の課題と進歩について議論する。
本論文の主な貢献は,2次元領域と3次元領域の人間のポーズ推定アルゴリズム(SOTA)の最新の比較である。
この包括的概要を提供することにより,3次元モデリングの理解を深め,評価を行い,現在のSOTAの成果,課題,今後の展望に関する洞察を提供する。
関連論文リスト
- Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Recent Advances in Deterministic Human Motion Prediction: A Review [2.965405736351051]
人動予測技術は、人間とコンピュータの相互作用、自律運転、スポーツ分析、人的追跡など、様々な分野で徐々に普及してきた。
この記事では、それぞれの利点とデメリットとともに、このドメインの共通モデルアーキテクチャを紹介します。
また、最近の研究革新を体系的に要約し、これらの分野における関連論文の詳細な議論に焦点を当てている。
論文 参考訳(メタデータ) (2023-12-11T07:54:42Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
本稿では,拡散モデルの基本数学的概念,実装の詳細,および一般的な安定拡散モデルの設計選択を紹介する。
また,拡散に基づく生成と編集に関する文献の急速な発展を概観する。
利用可能なデータセット、メトリクス、オープンな課題、社会的意味について議論する。
論文 参考訳(メタデータ) (2023-10-11T05:32:29Z) - Advanced Baseline for 3D Human Pose Estimation: A Two-Stage Approach [1.52292571922932]
本稿では,2段階法における2次元から3次元への昇降過程に着目し,より高度な3次元ポーズ推定ベースラインモデルを提案する。
私たちの改善点は、機械学習モデルと複数のパラメータの最適化と、トレーニングモデルへの重み付き損失の導入です。
論文 参考訳(メタデータ) (2022-12-21T20:31:39Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
生成モデルは、新しいインスタンスを生成することによって観測データの分布を学習することを目的としている。
最近、研究者は焦点を2Dから3Dにシフトし始めた。
3Dデータの表現は、非常に大きな課題をもたらします。
論文 参考訳(メタデータ) (2022-10-27T17:59:50Z) - 2D Human Pose Estimation: A Survey [16.56050212383859]
人間のポーズ推定は、入力データ中の人間の解剖学的キーポイントまたは身体部分のローカライズを目的としている。
ディープラーニング技術は、データから直接特徴表現を学習することを可能にする。
本稿では,近年の2次元ポーズ推定手法の成果を振り返り,包括的調査を行う。
論文 参考訳(メタデータ) (2022-04-15T08:09:43Z) - 3D Human Motion Prediction: A Survey [23.605334184939164]
人間の3D動作予測は、与えられたシーケンスから将来のポーズを予測するもので、コンピュータビジョンとマシンインテリジェンスにおいて大きな重要性と課題である。
既存の公開文献からの関連作品のふりかえりと分析を目的として, 人間の3次元動作予測に関する総合的な調査を行った。
論文 参考訳(メタデータ) (2022-03-03T09:46:43Z) - 3D Object Detection from Images for Autonomous Driving: A Survey [68.33502122185813]
画像から3Dオブジェクトを検出することは、自動運転の基本的かつ困難な問題の一つだ。
この問題を2015年から2021年にかけて200以上の研究が行われ、理論、アルゴリズム、応用の幅広い範囲で研究されている。
我々は,この新奇で継続的な研究分野を包括的に調査し,画像に基づく3D検出に最もよく使用されるパイプラインを要約する。
論文 参考訳(メタデータ) (2022-02-07T07:12:24Z) - Recent Advances in Monocular 2D and 3D Human Pose Estimation: A Deep
Learning Perspective [69.44384540002358]
この問題に対処するための包括的で包括的な2D-to-3D視点を提供する。
2014年からの主流とマイルストーンのアプローチを統一フレームワークで分類しています。
また,ポーズ表現スタイル,ベンチマーク,評価指標,一般的なアプローチの定量的評価を要約した。
論文 参考訳(メタデータ) (2021-04-23T11:07:07Z) - Deep Learning-Based Human Pose Estimation: A Survey [66.01917727294163]
人間のポーズ推定は、過去10年間に注目を集めてきた。
ヒューマン・コンピュータ・インタラクション、モーション・アナリティクス、拡張現実、バーチャル・リアリティーなど幅広い用途で利用されている。
最近のディープラーニングベースのソリューションは、人間のポーズ推定において高いパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-12-24T18:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。