LLMEasyQuant: Scalable Quantization for Parallel and Distributed LLM Inference
- URL: http://arxiv.org/abs/2406.19657v4
- Date: Mon, 12 May 2025 04:21:38 GMT
- Title: LLMEasyQuant: Scalable Quantization for Parallel and Distributed LLM Inference
- Authors: Dong Liu, Yanxuan Yu,
- Abstract summary: We present textbfLLMEasyQuant, a system-aware quantization framework for large language models (LLMs)<n>It is designed for efficient, low-bit inference of LLMs on single-node multi-GPU, multi-node, and edge hardware.
- Score: 6.185573921868495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) grow in size and deployment scale, quantization has become an essential technique for reducing memory footprint and improving inference efficiency. However, existing quantization toolkits often lack transparency, flexibility, and system-level scalability across GPUs and distributed environments. We present \textbf{LLMEasyQuant}, a modular, system-aware quantization framework designed for efficient, low-bit inference of LLMs on single-node multi-GPU, multi-node, and edge hardware. LLMEasyQuant supports a wide range of quantization methods -- including Symmetric Quantization, ZeroQuant, SmoothQuant, and SimQuant -- with unified interfaces for per-layer calibration, bitwidth assignment, and runtime adaptation. It integrates fused CUDA kernels with NCCL-based distributed synchronization and supports both static and online quantization. Empirical results show that LLMEasyQuant can achieve substantial speedups in GEMM execution, HBM load time, and near-linear multi-GPU scaling. Ablation studies further validate its ability to balance latency, memory, and accuracy under diverse deployment conditions. LLMEasyQuant offers a practical quantization serving system for scalable, hardware-optimized LLM inference.
Related papers
- FamilyTool: A Multi-hop Personalized Tool Use Benchmark [94.1158032740113]
We introduce FamilyTool, a novel benchmark grounded in a family-based knowledge graph (KG)
FamilyTool challenges Large Language Models with queries spanning 1 to 3 relational hops.
Experiments reveal significant performance gaps in state-of-the-art LLMs.
arXiv Detail & Related papers (2025-04-09T10:42:36Z) - Highly Optimized Kernels and Fine-Grained Codebooks for LLM Inference on Arm CPUs [0.8217552831952]
Large language models (LLMs) have transformed the way we think about language understanding and generation.<n>Group quantization formats commonly used for LLM quantization have significant compute overheads and a resource-intensive dequantization process.<n>We present a groupwise non-uniform codebook-based quantization method for ultra-low-precision quantization of LLMs to better match non-uniform patterns in their weight distributions.
arXiv Detail & Related papers (2024-12-23T03:44:29Z) - Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
We present codellm-devkit (hereafter, CLDK'), an open-source library that significantly simplifies the process of performing program analysis.
CLDK offers developers an intuitive and user-friendly interface, making it incredibly easy to provide rich program analysis context to code LLMs.
arXiv Detail & Related papers (2024-10-16T20:05:59Z) - Sketch: A Toolkit for Streamlining LLM Operations [51.33202045501429]
Large language models (LLMs) have achieved remarkable success.
The flexibility of their output format poses challenges in controlling and harnessing the model's outputs.
We present Sketch, an innovative toolkit designed to streamline LLM operations across diverse fields.
arXiv Detail & Related papers (2024-09-05T08:45:44Z) - Fast Matrix Multiplications for Lookup Table-Quantized LLMs [58.11584672945781]
FLUTE is a flexible lookup table engine for LUT-quantized LLMs.<n>At batch sizes 32 and quantization group size of 128, the FLUTE kernel can be 2-4x faster than existing GEMM kernels.
arXiv Detail & Related papers (2024-07-15T17:55:42Z) - Evaluating the Generalization Ability of Quantized LLMs: Benchmark, Analysis, and Toolbox [46.39670209441478]
Large language models (LLMs) have exhibited exciting progress in multiple scenarios.
As an effective means to reduce memory footprint and inference cost, quantization also faces challenges in performance degradation at low bit-widths.
This work provides a comprehensive benchmark suite for this research topic, including an evaluation system, detailed analyses, and a general toolbox.
arXiv Detail & Related papers (2024-06-15T12:02:14Z) - Large Language Models as Software Components: A Taxonomy for LLM-Integrated Applications [0.0]
Large Language Models (LLMs) have become widely adopted recently. Research explores their use both as autonomous agents and as tools for software engineering.
LLMs-integrated applications, on the other hand, are software systems that leverage an LLM to perform tasks that would otherwise be impossible or require significant coding effort.
This study provides a taxonomy for LLM-integrated applications, offering a framework for analyzing and describing these systems.
arXiv Detail & Related papers (2024-06-13T21:32:56Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [63.118592279833656]
Post-training quantization (PTQ) is an effective technique for compressing large language models (LLMs)<n>We propose SliM-LLM, a salience-driven mixed-precision quantization framework that allocates bit-widths at the group-wise.<n> Experiments show that SliM-LLM achieves superior performance across various LLMs at low bit-widths.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - LLM-PQ: Serving LLM on Heterogeneous Clusters with Phase-Aware Partition
and Adaptive Quantization [9.517540904818986]
This paper proposes adaptive model quantization and phase-aware partition to improve LLM serving efficiency on heterogeneous GPU clusters.
Experiments on production inference workloads in 11 different clusters demonstrate that LLM-PQ achieves up to 2.88x (2.26x on average) throughput improvement in inference.
arXiv Detail & Related papers (2024-03-02T08:40:07Z) - A Comprehensive Evaluation of Quantization Strategies for Large Language Models [42.03804933928227]
Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs.
Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular.
We propose a structured evaluation framework consisting of three critical dimensions: knowledge & capacity, (2) alignment, and (3) efficiency.
arXiv Detail & Related papers (2024-02-26T17:45:36Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process.
This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers.
arXiv Detail & Related papers (2024-02-19T11:33:21Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z) - EasyTransfer -- A Simple and Scalable Deep Transfer Learning Platform
for NLP Applications [65.87067607849757]
EasyTransfer is a platform to develop deep Transfer Learning algorithms for Natural Language Processing (NLP) applications.
EasyTransfer supports various NLP models in the ModelZoo, including mainstream PLMs and multi-modality models.
EasyTransfer is currently deployed at Alibaba to support a variety of business scenarios.
arXiv Detail & Related papers (2020-11-18T18:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.