Rateless Stochastic Coding for Delay-constrained Semantic Communication
- URL: http://arxiv.org/abs/2406.19804v1
- Date: Fri, 28 Jun 2024 10:27:06 GMT
- Title: Rateless Stochastic Coding for Delay-constrained Semantic Communication
- Authors: Cheng Peng, Rulong Wang, Yong Xiao,
- Abstract summary: We find a new finite-blocklength bound for the achievable joint source-channel code rate with distortion and perception constraints.
We then propose a new J SCC coding scheme called rateless coding (RSC)
- Score: 5.882972817816777
- License:
- Abstract: We consider the problem of joint source-channel coding with distortion and perception constraints from a rateless perspective, the purpose of which is to settle the balance between reliability (distortion/perception) and effectiveness (rate) of transmission over uncertain channels. We find a new finite-blocklength bound for the achievable joint source-channel code rate with the above two constraints. To achieve a superior rateless characteristic of JSCC coding, we perform multi-level optimization on various finite-blocklength codes. Based on these two, we then propose a new JSCC coding scheme called rateless stochastic coding (RSC). We experimentally demonstrate that the proposed RSC can achieve variable rates of transmission maintaining an excellent trade-off between distortion and perception.
Related papers
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Optimizing state-discrimination receivers for continuous-variable
quantum key distribution over a wiretap channel [1.3108652488669736]
We address a continuous-variable quantum key distribution protocol employing quaternary phase-shift-keying (QPSK) of coherent states.
We consider a pure-loss quantum wiretap channel, in which a possible eavesdropper is limited to collect the sole channel losses.
arXiv Detail & Related papers (2023-06-20T12:26:06Z) - Deep Joint Source-Channel Coding with Iterative Source Error Correction [11.41076729592696]
We propose an iterative source error correction (ISEC) decoding scheme for deep-learning-based joint source-channel code (Deep J SCC)
Given a noisyword received through the channel, we use a Deep J SCC encoder and decoder pair to update the code iteratively.
The proposed scheme produces more reliable source reconstruction results compared to the baseline when the channel noise characteristics do not match the ones used during training.
arXiv Detail & Related papers (2023-02-17T22:50:58Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
arXiv Detail & Related papers (2022-09-16T11:00:50Z) - Adaptive Information Bottleneck Guided Joint Source and Channel Coding
for Image Transmission [132.72277692192878]
An adaptive information bottleneck (IB) guided joint source and channel coding (AIB-JSCC) is proposed for image transmission.
The goal of AIB-JSCC is to reduce the transmission rate while improving the image reconstruction quality.
Experimental results show that AIB-JSCC can significantly reduce the required amount of transmitted data and improve the reconstruction quality.
arXiv Detail & Related papers (2022-03-12T17:44:02Z) - SNR-adaptive deep joint source-channel coding for wireless image
transmission [14.793908797250989]
An autoencoder-based novel deep joint source-channel coding scheme is proposed in this paper.
The decoder can estimate the signal-to-noise ratio (SNR) and use it to adaptively decode the transmitted image.
arXiv Detail & Related papers (2021-01-30T10:30:04Z) - Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding [7.081604594416339]
We consider the scenario in which images are transmitted progressively in layers over time or frequency.
DeepJSCC-$l$ is an innovative solution that uses convolutional autoencoders.
DeepJSCC-$l$ has comparable performance with state of the art digital progressive transmission schemes in the challenging low signal-to-noise ratio (SNR) and small bandwidth regimes.
arXiv Detail & Related papers (2020-09-26T00:11:50Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
Communication bottleneck has been a critical problem in large-scale deep learning.
We propose a new distributed error feedback (DEF) algorithm, which shows better convergence than error feedback for non-efficient distributed problems.
We also propose DEFA to accelerate the generalization of DEF, which shows better bounds than DEF.
arXiv Detail & Related papers (2020-04-11T03:50:59Z) - Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip [41.28049430114734]
We propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme.
Our IABF can achieve state-of-the-art performances on both compression and error correction benchmarks and outperform the baselines by a significant margin.
arXiv Detail & Related papers (2020-04-03T10:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.