論文の概要: Graph Neural Networks for Gut Microbiome Metaomic data: A preliminary work
- arxiv url: http://arxiv.org/abs/2407.00142v1
- Date: Fri, 28 Jun 2024 15:53:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:10:29.081020
- Title: Graph Neural Networks for Gut Microbiome Metaomic data: A preliminary work
- Title(参考訳): Gut Microbiome Metaomic Dataのためのグラフニューラルネットワーク:予備研究
- Authors: Christopher Irwin, Flavio Mignone, Stefania Montani, Luigi Portinale,
- Abstract要約: グラフニューラルネットワーク(GNN)を用いた個々の腸内マイクロバイオームの有意義な表現の導出を目指す。
エンコーダから学習した表現は、炎症性腸疾患(IBD)などの表現型予測モデルの訓練に使用される。
- 参考スコア(独自算出の注目度): 0.47248250311484113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The gut microbiome, crucial for human health, presents challenges in analyzing its complex metaomic data due to high dimensionality and sparsity. Traditional methods struggle to capture its intricate relationships. We investigate graph neural networks (GNNs) for this task, aiming to derive meaningful representations of individual gut microbiomes. Unlike methods relying solely on taxa abundance, we directly leverage phylogenetic relationships, in order to obtain a generalized encoder for taxa networks. The representation learnt from the encoder are then used to train a model for phenotype prediction such as Inflammatory Bowel Disease (IBD).
- Abstract(参考訳): 腸内マイクロバイオームは人間の健康に不可欠であり、高次元と空間性のために複雑な代謝データを解析する際の課題を提示する。
伝統的な方法は複雑な関係をつかむのに苦労する。
本課題に対するグラフニューラルネットワーク (GNN) について検討し, 個々の腸内マイクロバイオームの有意義な表現を導出することを目的とした。
分類網の汎用エンコーダを得るためには, 植物遺伝学的関係を直接活用する。
エンコーダから学習した表現は、炎症性腸疾患(IBD)のような表現型予測のモデルを訓練するために使用される。
関連論文リスト
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
ホモフィリ原理では、同じラベルや類似属性を持つieノードが接続される可能性が高い。
最近の研究で、GNNのパフォーマンスとNNのパフォーマンスが満足できない非自明なデータセットが特定されている。
論文 参考訳(メタデータ) (2024-07-12T18:04:32Z) - Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease [13.630617713928197]
グラフニューラルネットワークは、古典的な統計学と機械学習の方法に代わる有望な代替手段として登場した。
本研究では,ケースコントロール分類のためのグラフ表現学習モデルについて検討する。
タンパク質-タンパク質相互作用やメタボライト-メタボライト相互作用を含む,サンプル類似性ネットワークと分子相互作用ネットワークから得られたトポロジーを比較した。
論文 参考訳(メタデータ) (2024-06-20T16:06:39Z) - Injecting Hierarchical Biological Priors into Graph Neural Networks for Flow Cytometry Prediction [1.7709249262395883]
本研究では、単一セルのマルチクラス分類のためのグラフニューラルネットワーク(GNN)に階層的な事前知識を注入することを検討する。
本稿では,複数のGNNモデル,すなわちFCHC-GNNに適用可能な階層的なプラグイン手法を提案する。
論文 参考訳(メタデータ) (2024-05-28T18:24:16Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - Graph data modelling for outcome prediction in oropharyngeal cancer
patients [38.37247384790338]
グラフニューラルネットワーク(GNN)は、疾患の分類と予後予測のタスクにおいて、医療分野でますます人気が高まっている。
口腔咽頭癌(OPC)患者の2次予後予測のためのインダクティブ・ラーニング・セットアップで検討した患者ハイパーグラフ・ネットワーク(PHGN)を提案する。
論文 参考訳(メタデータ) (2023-10-04T16:09:35Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
本稿では,重要なグラフノード間の接続を強く表現するために,RGBチャネルの特徴値の相互接続性を活用し,GNNとエッジ畳み込みを組み合わせた新しいモデルを提案する。
提案モデルでは,最新のDeep Neural Networks (DNN) と同等に動作するが,1000倍のパラメータが減少し,トレーニング時間とデータ要求が短縮される。
論文 参考訳(メタデータ) (2023-07-24T13:39:21Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
現在の生物学的ネットワークは、ノイズ、スパース、不完全であり、そのような相互作用の実験的同定には時間と費用がかかる。
ディープグラフニューラルネットワークは、グラフ構造データモデリングの有効性を示し、バイオメディカル相互作用予測において優れた性能を達成した。
提案手法により,グラフ畳み込みネットワークは,その深度を動的に適応し,対話数の増加に対応することができる。
論文 参考訳(メタデータ) (2022-11-22T20:44:28Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
決定規則の結合や解離に基づくアンサンブル学習アルゴリズムを提案する。
モデルの解釈可能性により、高次元データのバイオマーカー発見やパターン発見に有用である。
論文 参考訳(メタデータ) (2022-08-11T13:55:04Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。