論文の概要: Deep Neural Networks with Symplectic Preservation Properties
- arxiv url: http://arxiv.org/abs/2407.00294v1
- Date: Sat, 29 Jun 2024 03:25:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 05:41:03.355277
- Title: Deep Neural Networks with Symplectic Preservation Properties
- Title(参考訳): シンプレクティック保存特性を持つディープニューラルネットワーク
- Authors: Qing He, Wei Cai,
- Abstract要約: 本稿では,その出力が入力の可逆的シンプレクトーフィズムを形成するように設計されたディープニューラルネットワークアーキテクチャを提案する。
この設計は、フローテクニックの正規化に使用される実数値の非保存体積法 (real NVP) に類似している。
- 参考スコア(独自算出の注目度): 10.700252603950107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a deep neural network architecture designed such that its output forms an invertible symplectomorphism of the input. This design draws an analogy to the real-valued non-volume-preserving (real NVP) method used in normalizing flow techniques. Utilizing this neural network type allows for learning tasks on unknown Hamiltonian systems without breaking the inherent symplectic structure of the phase space.
- Abstract(参考訳): 本稿では,その出力が入力の可逆的シンプレクトーフィズムを形成するように設計されたディープニューラルネットワークアーキテクチャを提案する。
この設計は、フローテクニックの正規化に使用される実数値の非体積保存法 (real NVP) に類似している。
このニューラルネットワーク型を利用することで、位相空間の固有のシンプレクティック構造を壊すことなく、未知のハミルトン系のタスクを学習することができる。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Lipschitz constant estimation for general neural network architectures using control tools [0.05120567378386613]
本稿では,半定値プログラミングを用いた一般ニューラルネットワークアーキテクチャのリプシッツ定数の推定について述べる。
我々はニューラルネットワークを時間変動力学系と解釈し、そこでは、$k$th層は、時間で$k$の力学に対応する。
論文 参考訳(メタデータ) (2024-05-02T09:38:16Z) - Deep learning for the design of non-Hermitian topolectrical circuits [8.960003862907877]
深層学習における多層パーセプトロン(MLP)と畳み込みニューラルネットワーク(CNN)を用いたアルゴリズムを導入し,非エルミートハミルトニアンの固有値のゆらぎを予測する。
本研究は,学習データに基づく非エルミート系の大域的トポロジカル特性の抽出におけるディープラーニングネットワークの有効性を実証するものである。
論文 参考訳(メタデータ) (2024-02-15T14:41:55Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Structured Neural Networks for Density Estimation and Causal Inference [15.63518195860946]
ニューラルネットワークに構造を注入することで、入力のサブセットに関する不変性を満たす学習機能を実現することができる。
本稿では,ニューラルネットワークのマスキング経路を通じて構造を注入する構造ニューラルネットワーク(StrNN)を提案する。
論文 参考訳(メタデータ) (2023-11-03T20:15:05Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Vanilla Feedforward Neural Networks as a Discretization of Dynamical Systems [9.382423715831687]
本稿では,従来のネットワーク構造に戻り,バニラフィードフォワードネットワークが動的システムの数値的な離散化であることを示す。
我々の結果は、フィードフォワードニューラルネットワークの近似特性を理解するための新しい視点を提供することができる。
論文 参考訳(メタデータ) (2022-09-22T10:32:08Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - A Dimensionality Reduction Approach for Convolutional Neural Networks [0.0]
本稿では,上記の次元削減手法と入出力マッピングを組み合わせることで,事前学習ネットワークの層数を削減できる汎用手法を提案する。
本実験により, 従来の畳み込みニューラルネットワークと同様の精度を達成でき, メモリ割り当てを抑えることができることがわかった。
論文 参考訳(メタデータ) (2021-10-18T10:31:12Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。