論文の概要: Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
- arxiv url: http://arxiv.org/abs/2411.05869v1
- Date: Thu, 07 Nov 2024 20:07:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:44.213369
- Title: Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
- Title(参考訳): ビッグデータ上の精密ガウス過程計算のためのコンパクト支持非定常カーネル
- Authors: Mark D. Risser, Marcus M. Noack, Hengrui Luo, Ronald Pandolfi,
- Abstract要約: スパーシリティと非定常性の両方を発見およびエンコードできる代替カーネルを導出する。
我々は,既存の精密かつ近似的なGP法と比較して,新しいカーネルの性能を実証する。
また,1日当たりの最大気温を100万回以上測定し,時空間予測を行った。
- 参考スコア(独自算出の注目度): 2.8377382540923004
- License:
- Abstract: The Gaussian process (GP) is a widely used probabilistic machine learning method for stochastic function approximation, stochastic modeling, and analyzing real-world measurements of nonlinear processes. Unlike many other machine learning methods, GPs include an implicit characterization of uncertainty, making them extremely useful across many areas of science, technology, and engineering. Traditional implementations of GPs involve stationary kernels (also termed covariance functions) that limit their flexibility and exact methods for inference that prevent application to data sets with more than about ten thousand points. Modern approaches to address stationarity assumptions generally fail to accommodate large data sets, while all attempts to address scalability focus on approximating the Gaussian likelihood, which can involve subjectivity and lead to inaccuracies. In this work, we explicitly derive an alternative kernel that can discover and encode both sparsity and nonstationarity. We embed the kernel within a fully Bayesian GP model and leverage high-performance computing resources to enable the analysis of massive data sets. We demonstrate the favorable performance of our novel kernel relative to existing exact and approximate GP methods across a variety of synthetic data examples. Furthermore, we conduct space-time prediction based on more than one million measurements of daily maximum temperature and verify that our results outperform state-of-the-art methods in the Earth sciences. More broadly, having access to exact GPs that use ultra-scalable, sparsity-discovering, nonstationary kernels allows GP methods to truly compete with a wide variety of machine learning methods.
- Abstract(参考訳): ガウス過程(英: Gaussian process, GP)は、確率関数近似、確率的モデリング、非線形過程の実世界の計測解析に広く用いられている確率論的機械学習手法である。
他の多くの機械学習手法とは異なり、GPには不確実性の暗黙的な特徴が含まれており、科学、技術、工学の分野で非常に有用である。
GPの伝統的な実装には、その柔軟性と1万以上の点を持つデータセットへの適用を妨げる推論の正確な方法を制限する定常カーネル(共分散関数とも呼ばれる)が含まれる。
定常性の仮定に対処する現代のアプローチは、一般に大きなデータセットに対応できないが、スケーラビリティに対処しようとする試みはすべて、主観性や不正確性につながる可能性のあるガウス的可能性の近似に焦点を当てている。
本研究では,空間性および非定常性の両方を発見・符号化できる代替カーネルを明示的に導出する。
完全ベイズGPモデルにカーネルを組み込み、大規模データセットの分析を可能にするために高性能な計算資源を活用する。
我々は, 既存の精密かつ近似的なGP法と比較して, 新たなカーネルの性能を, 様々な合成データの例に比較して示す。
さらに,1日当たりの最大気温を100万回以上測定した時空間予測を行い,その結果が地球科学における最先端の手法より優れていることを検証した。
より広範に言えば、超スケーラブルでスポーサリティを発見できる非定常カーネルを使った正確なGPにアクセスすることで、GP手法は幅広い機械学習手法と真に競合することができる。
関連論文リスト
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
我々は、1.8万のデータポイントでトレーニングされた計算対応GPのモデル選択が、1つのGPU上で数時間以内に可能であることを示す。
この研究の結果、ガウス過程は、不確実性を定量化する能力を著しく妥協することなく、大規模なデータセットで訓練することができる。
論文 参考訳(メタデータ) (2024-11-01T21:11:48Z) - A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian Processes [0.9558392439655016]
代表データセットを用いて動作中のさまざまなカーネルを示し、その特性を慎重に研究し、性能を比較する。
そこで本研究では,既存のカーネルの利点を活かしたカーネルを提案する。
論文 参考訳(メタデータ) (2023-09-18T18:34:51Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Exact Gaussian Processes for Massive Datasets via Non-Stationary
Sparsity-Discovering Kernels [0.0]
本稿では,カーネルがスパース構造を誘導する代わりに,自然に構造されたスパース性を活用することを提案する。
超フレキシブル、コンパクトサポート、非定常カーネルの原理とHPCと制約付き最適化を組み合わせることで、500万のデータポイントを超える正確なGPをスケールできる。
論文 参考訳(メタデータ) (2022-05-18T16:56:53Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Correlated Product of Experts for Sparse Gaussian Process Regression [2.466065249430993]
そこで本研究では,複数の地域および関連専門家からの予測の集約に基づく新しいアプローチを提案する。
本手法は, 独立系エキスパート製品, スパースGP, フルGPを限定例で回収する。
提案手法は,最先端GP近似法に対して,時間対精度で優れた性能を示す。
論文 参考訳(メタデータ) (2021-12-17T14:14:08Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local
Cross-Validation [1.2233362977312945]
本稿では,新しいGPハイパーパラメータ推定法であるMuyGPを提案する。
MuyGPsは、データの最も近い隣人構造を利用する事前のメソッドの上に構築される。
提案手法は, 解法と予測値の平均二乗誤差の両方において, 既知の競合よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-29T18:10:21Z) - Sparse Gaussian Processes via Parametric Families of Compactly-supported
Kernels [0.6091702876917279]
本稿では,コンパクトなサポートを持つカーネル関数のパラメトリック族を導出する手法を提案する。
この種類のカーネルのパラメータは、最大推定値を用いてデータから学習することができる。
これらの近似は、ターゲットGPから直接描画されたデータをモデル化する際に、正確なモデルに対して最小限の誤差を生じさせることを示す。
論文 参考訳(メタデータ) (2020-06-05T20:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。