論文の概要: Obtaining $(ε,δ)$-differential privacy guarantees when using a Poisson mechanism to synthesize contingency tables
- arxiv url: http://arxiv.org/abs/2407.00417v1
- Date: Sat, 29 Jun 2024 11:57:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 03:15:45.275095
- Title: Obtaining $(ε,δ)$-differential privacy guarantees when using a Poisson mechanism to synthesize contingency tables
- Title(参考訳): Poisson メカニズムを使用してコンテンジェンシーテーブルを合成する場合、$(ε,δ)$-differential privacy を保証する
- Authors: James Jackson, Robin Mitra, Brian Francis, Iain Dove,
- Abstract要約: 本稿では,Poisson分布の累積分布関数を用いて,$(epsilon, delta)$-probabilistic差分プライバシー保証を得る方法を示す。
本稿では,行政型機密データベースの構築を実証的に実施する。
- 参考スコア(独自算出の注目度): 0.6449761153631165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that differential privacy type guarantees can be obtained when using a Poisson synthesis mechanism to protect counts in contingency tables. Specifically, we show how to obtain $(\epsilon, \delta)$-probabilistic differential privacy guarantees via the Poisson distribution's cumulative distribution function. We demonstrate this empirically with the synthesis of an administrative-type confidential database.
- Abstract(参考訳): 本稿では, ポアソン合成機構を用いて, 待ち時間表の数の保護を行う場合に, 差分プライバシ型保証が得られることを示す。
具体的には、Poisson分布の累積分布関数を介して、$(\epsilon, \delta)$-probabilistic差分プライバシー保証を得る方法を示す。
本稿では,行政型機密データベースの構築を実証的に実施する。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition [13.192083588571384]
我々は、サブサンプルの差分秘密機構の構成に対する厳密なプライバシー保証の計算の問題を考える。
近年のアルゴリズムでは、プライバシーパラメータを任意の精度で数値計算できるが、慎重に適用する必要がある。
論文 参考訳(メタデータ) (2024-05-27T20:30:12Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - The Poisson binomial mechanism for secure and private federated learning [19.399122892615573]
本稿では,分散平均推定(DME)のための離散的差分プライバシー機構を導入し,フェデレーション学習と分析に応用する。
我々は、プライバシー保証の厳密な分析を行い、連続的なガウス機構と同じプライバシーと精度のトレードオフを達成することを示す。
論文 参考訳(メタデータ) (2022-07-09T05:46:28Z) - Nonparametric extensions of randomized response for private confidence sets [51.75485869914048]
本研究は,局所的差分プライバシー(LDP)の制約の下で,集団平均の非パラメトリック,非漸近的統計的推測を行う手法を導出する。
民営化データへのアクセスのみを与えられた場合、$mustar$に対して信頼区間(CI)と時間一様信頼シーケンス(CS)を提示する。
論文 参考訳(メタデータ) (2022-02-17T16:04:49Z) - Optimal Accounting of Differential Privacy via Characteristic Function [25.78065563380023]
本稿では,プライバシ・プロフィール,プライバシ・プロファイル,$f$-DP,PLDフォーマリズムなどの最近の進歩を,ある最悪のケースのプライバシ・ロスランダム変数の特徴関数(phi$-function)を介して統一することを提案する。
我々のアプローチは、Renyi DPのような自然適応的な構成を可能にし、PDDのような厳密なプライバシ会計を提供し、プライバシープロファイルや$f$-DPに変換できることが示されています。
論文 参考訳(メタデータ) (2021-06-16T06:13:23Z) - Local Differential Privacy Is Equivalent to Contraction of
$E_\gamma$-Divergence [7.807294944710216]
我々は, LDP 制約を$E_gamma$-divergence の縮約係数で等価にキャストできることを示す。
次に、この等価式を用いて、任意の$f$-divergencesの収縮係数の観点から、プライバシー機構のLCP保証を表現する。
論文 参考訳(メタデータ) (2021-02-02T02:18:12Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
ランダムシャッフルは、局所的ランダム化データの差分プライバシー保証を増幅する。
私たちの結果は、以前の作業よりも単純で、ほぼ同じ保証で差分プライバシーに拡張された新しいアプローチに基づいています。
論文 参考訳(メタデータ) (2020-12-23T17:07:26Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。