論文の概要: Physics-informed neural network for quantum control of NMR registers
- arxiv url: http://arxiv.org/abs/2407.00444v1
- Date: Sat, 29 Jun 2024 13:56:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 03:15:45.253667
- Title: Physics-informed neural network for quantum control of NMR registers
- Title(参考訳): NMRレジスタの量子制御のための物理インフォームニューラルネットワーク
- Authors: Priya Batra, T. S. Mahesh,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)を用いた量子制御の実験的検討を行った。
PINNの健全な特徴は、ネットワークパラメータの観点から制御シーケンス全体をエンコードする方法である。
ゲート合成と状態準備という2つの重要な量子情報課題について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical and quantum machine learning are being increasingly applied to various tasks in quantum information technologies. Here, we present an experimental demonstration of quantum control using a physics-informed neural network (PINN). PINN's salient feature is how it encodes the entire control sequence in terms of its network parameters. This feature enables the control sequence to be later adopted to any hardware with optimal time discretization, which contrasts with conventional methods involving a priory time discretization. Here, we discuss two important quantum information tasks: gate synthesis and state preparation. First, we demonstrate quantum gate synthesis by designing a two-qubit CNOT gate and experimentally implementing it on a heteronuclear two-spin NMR register. Second, we demonstrate quantum state preparation by designing a control sequence to efficiently transfer the thermal state into the long-lived singlet state and experimentally implement it on a homonuclear two-spin NMR register. We present a detailed numerical analysis of the PINN control sequences regarding bandwidth, discretization levels, control field errors, and external noise.
- Abstract(参考訳): 古典的および量子機械学習は、量子情報技術の様々なタスクにますます応用されている。
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いた量子制御の実験実験について述べる。
PINNの健全な特徴は、ネットワークパラメータの観点から制御シーケンス全体をエンコードする方法である。
この特徴により、制御シーケンスを任意のハードウェアに最適な時間離散化で適用することができるが、これは優先順位時間離散化を含む従来の手法とは対照的である。
ここでは,ゲート合成と状態準備という2つの重要な量子情報課題について論じる。
まず、2量子ビットのCNOTゲートを設計し、ヘテロ核二スピンNMRレジスタ上で実験的に実装することで量子ゲート合成を実証する。
第2に、長寿命一重項状態に効率よく熱状態を伝達する制御配列を設計し、同核二スピンNMRレジスタに実験的に実装することにより、量子状態の準備を実証する。
本稿では、帯域幅、離散化レベル、制御フィールドエラー、外部ノイズに関するPINN制御シーケンスを詳細に解析する。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Quantum tensor networks algorithms for evaluation of spectral functions
on quantum computers [0.0]
テンソルネットワークから導かれる量子アルゴリズムを用いて,量子多体系の静的および動的特性をシミュレートする。
量子コンピュータ上で基底状態と励起状態を作成し、分子ナノマグネット(MNM)に応用するアルゴリズムをパラダイムとして示す。
論文 参考訳(メタデータ) (2023-09-26T18:01:42Z) - Quantum networks with neutral atom processing nodes [0.42970700836450487]
量子ノードのメッシュ上の共有絡み合いを提供する量子ネットワークは、量子情報科学の分野に革命をもたらす。
個々の中性原子による最近の実験的進歩は、そのようなネットワークの重要な構成要素を実装する高い可能性を示している。
我々は、中性原子処理ノードからなる大規模量子ネットワークにおける機能要件といくつかの例について述べる。
論文 参考訳(メタデータ) (2023-04-04T19:34:13Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
我々は、QUantum Network Communication (SeQUeNCe) のオープンソースシミュレータを用いて、2つの原子周波数コム(AFC)吸収量子メモリ間の絡み合いの発生をシミュレートする。
本研究は,SeQUeNCe における truncated Fock 空間内の光量子状態の表現を実現する。
本研究では,SPDC音源の平均光子数と,平均光子数とメモリモード数の両方で異なる絡み合い発生率を観測する。
論文 参考訳(メタデータ) (2022-12-17T05:51:17Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Measuring Quantum Entanglement from Local Information by Machine
Learning [10.161394383081145]
絡み合いは量子技術の発展における鍵となる性質である。
本稿では,局所ハミルトニアンの平衡状態と非平衡状態の絡み合いを測定するためのニューラルネットワーク支援プロトコルを提案する。
論文 参考訳(メタデータ) (2022-09-18T08:15:49Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
パラメータ化量子回路で完了した2プレーヤゼロサムゲームとして,両部絡み検出を再構成する。
このプロトコルを線形光ネットワーク上で実験的に実装し、5量子量子純状態と2量子量子混合状態の両部絡み検出に有効であることを示す。
論文 参考訳(メタデータ) (2022-03-15T09:46:45Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:32:57Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。