論文の概要: Fully tensorial approach to hypercomplex neural networks
- arxiv url: http://arxiv.org/abs/2407.00449v3
- Date: Sat, 24 May 2025 18:43:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:41.722803
- Title: Fully tensorial approach to hypercomplex neural networks
- Title(参考訳): 超複雑ニューラルネットワークに対する完全テンソル的アプローチ
- Authors: Agnieszka Niemczynowicz, Radosław Antoni Kycia,
- Abstract要約: ニューラルネットワークは任意の代数に基づく算術を使うことができる。
鍵となる点は、代数乗法が階数 3 のテンソルとして表せることを観察することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully tensorial theory of hypercomplex neural networks is given. It allows neural networks to use arithmetic based on arbitrary algebras. The key point is to observe that algebra multiplication can be represented as a rank three tensor and use this tensor in every algebraic operation. This approach is attractive for neural network libraries that support effective tensorial operations. It agrees with previous implementations for four-dimensional algebras.
- Abstract(参考訳): 超複素ニューラルネットワークの完全なテンソル理論が与えられる。
ニューラルネットワークは任意の代数に基づく算術を使うことができる。
鍵となる点は、代数乗法が階数 3 のテンソルとして表され、すべての代数的操作でこのテンソルを使うことができることである。
このアプローチは、効果的なテンソル操作をサポートするニューラルネットワークライブラリにとって魅力的なものだ。
これは4次元代数の以前の実装と一致する。
関連論文リスト
- Activation thresholds and expressiveness of polynomial neural networks [0.0]
多項式ニューラルネットワークは様々な用途で実装されている。
本稿では,ネットワークアーキテクチャのアクティベーションしきい値の概念を紹介する。
論文 参考訳(メタデータ) (2024-08-08T16:28:56Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Universal Approximation Theorem for Vector- and Hypercomplex-Valued Neural Networks [0.3686808512438362]
普遍近似定理(英: universal approximation theorem)は、1つの隠れた層を持つニューラルネットワークがコンパクト集合上の連続関数を近似できるという定理である。
これは、実数値ニューラルネットワークと超複素数値ニューラルネットワークに有効である。
論文 参考訳(メタデータ) (2024-01-04T13:56:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - On the Approximation and Complexity of Deep Neural Networks to Invariant
Functions [0.0]
深部ニューラルネットワークの不変関数への近似と複雑性について検討する。
様々なタイプのニューラルネットワークモデルにより、幅広い不変関数を近似できることを示す。
我々は,高分解能信号のパラメータ推定と予測を理論的結論と結びつけることが可能なアプリケーションを提案する。
論文 参考訳(メタデータ) (2022-10-27T09:19:19Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Extending the Universal Approximation Theorem for a Broad Class of
Hypercomplex-Valued Neural Networks [1.0323063834827413]
普遍近似定理は、単一の隠れ層ニューラルネットワークがコンパクト集合上の任意の所望の精度で連続関数を近似すると主張する。
本稿では,超複素数値ニューラルネットワークの広範クラスに対する普遍近似定理を拡張した。
論文 参考訳(メタデータ) (2022-09-06T12:45:15Z) - A note on the complex and bicomplex valued neural networks [0.0]
まず、複素多値ニューラルネットワーク(CMVNN)のパーセプトロン収束アルゴリズムの証明を記述する。
我々の第一の目的は、両複素多値ニューラルネットワーク(BMVNN)のパーセプトロン収束アルゴリズムを定式化し、証明することである。
論文 参考訳(メタデータ) (2022-02-04T19:25:01Z) - Optimal Approximation with Sparse Neural Networks and Applications [0.0]
深い疎結合ニューラルネットワークを用いて、関数クラスの複雑性を$L(mathbb Rd)$で測定する。
また、ニューラルネットワークを誘導する関数の可算コレクションである表現システムについても紹介する。
次に、レート歪曲理論とウェッジレット構成を用いて、$beta$マンガ的関数と呼ばれるクラスの複雑性を分析する。
論文 参考訳(メタデータ) (2021-08-14T05:14:13Z) - Neuron-based explanations of neural networks sacrifice completeness and interpretability [67.53271920386851]
我々は、ImageNetで事前訓練されたAlexNetに対して、ニューロンに基づく説明法が完全性と解釈可能性の両方を犠牲にすることを示す。
我々は、最も重要な主成分が、最も重要なニューロンよりも完全で解釈可能な説明を提供することを示す。
この結果から,AlexNet などのネットワークに対する説明手法は,ニューロンを埋め込みの基盤として使用するべきではないことが示唆された。
論文 参考訳(メタデータ) (2020-11-05T21:26:03Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。