論文の概要: Directly Handling Missing Data in Linear Discriminant Analysis for Enhancing Classification Accuracy and Interpretability
- arxiv url: http://arxiv.org/abs/2407.00710v2
- Date: Mon, 2 Sep 2024 07:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 17:31:13.802807
- Title: Directly Handling Missing Data in Linear Discriminant Analysis for Enhancing Classification Accuracy and Interpretability
- Title(参考訳): 線形判別分析におけるミスデータの直接処理による分類精度と解釈性の向上
- Authors: Tuan L. Vo, Uyen Dang, Thu Nguyen,
- Abstract要約: 重み付き欠失線形判別分析(WLDA)と呼ばれる新しい頑健な分類法を提案する。
WLDAは線形判別分析(LDA)を拡張して、計算不要な値でデータセットを処理する。
我々はWLDAの特性を確立するために詳細な理論解析を行い、その説明可能性について徹底的に評価する。
- 参考スコア(独自算出の注目度): 1.4840867281815378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the adoption of Artificial Intelligence (AI) models expands into critical real-world applications, ensuring the explainability of these models becomes paramount, particularly in sensitive fields such as medicine and finance. Linear Discriminant Analysis (LDA) remains a popular choice for classification due to its interpretable nature, derived from its capacity to model class distributions and enhance class separation through linear combinations of features. However, real-world datasets often suffer from incomplete data, posing substantial challenges for both classification accuracy and model interpretability. In this paper, we introduce a novel and robust classification method, termed Weighted missing Linear Discriminant Analysis (WLDA), which extends LDA to handle datasets with missing values without the need for imputation. Our approach innovatively incorporates a weight matrix that penalizes missing entries, thereby refining parameter estimation directly on incomplete data. This methodology not only preserves the interpretability of LDA but also significantly enhances classification performance in scenarios plagued by missing data. We conduct an in-depth theoretical analysis to establish the properties of WLDA and thoroughly evaluate its explainability. Experimental results across various datasets demonstrate that WLDA consistently outperforms traditional methods, especially in challenging environments where missing values are prevalent in both training and test datasets. This advancement provides a critical tool for improving classification accuracy and maintaining model transparency in the face of incomplete data.
- Abstract(参考訳): 人工知能(AI)モデルの採用が重要な現実世界の応用へと拡大するにつれて、これらのモデルの説明可能性が最も重要となる。
線形判別分析(LDA)は、その解釈可能な性質から、クラス分布のモデル化と特徴の線形結合によるクラス分離の強化により、分類において一般的な選択肢である。
しかし、現実世界のデータセットは不完全なデータに悩まされることが多く、分類精度とモデル解釈可能性の両方に重大な課題が生じる。
本稿では、LDAを拡張して、計算不要な値でデータセットを扱えるように拡張した、重み付き欠落線形識別分析(WLDA)という、新しい頑健な分類手法を提案する。
提案手法は,欠落したエントリをペナライズする重み行列を革新的に組み込んで,不完全データを直接パラメータ推定する。
この手法はLDAの解釈可能性を保持するだけでなく、欠落したデータに悩まされるシナリオにおける分類性能を大幅に向上させる。
我々はWLDAの特性を確立するために詳細な理論解析を行い、その説明可能性について徹底的に評価する。
さまざまなデータセットにわたる実験結果は、WLDAが従来のメソッド、特にトレーニングとテスト両方のデータセットで欠落した値が一般的である困難な環境で、一貫してパフォーマンスを向上していることを示している。
この進歩は、分類精度を改善し、不完全なデータに直面してモデルの透明性を維持するための重要なツールを提供する。
関連論文リスト
- Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
マシン・アンラーニング(英: Machine Unlearning)とは、特定のデータセットやクラスに指定された情報を事前訓練されたモデルから選択的に破棄するプロセスである。
本研究では,事前学習した分類ネットワークから,特定の種類のデータに関連付けられた情報の目的的除去に適した手法を提案する。
本手法は,従来の最先端の未学習手法を超越し,優れた有効性を示す。
論文 参考訳(メタデータ) (2024-03-24T17:33:22Z) - Enhancing Interpretability and Generalizability in Extended Isolation Forests [5.139809663513828]
ExIFFI (Extended isolated Forest Feature Importance) は、EIF(Extended isolated Forest)モデルによる予測を説明する手法である。
EIF+は、修正された分割戦略により、見えない異常を検出するモデルの能力を高めるように設計されている。
ExIFFIは、11の現実世界のデータセットのうち8つで、他の教師なしの解釈可能性メソッドよりも優れています。
論文 参考訳(メタデータ) (2023-10-09T07:24:04Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
データ不足は機械学習(ML)モデリングの課題となる可能性がある。
現在のアプローチは、特徴計算とラベル予測に分類される。
本研究は、観測データに欠落した値でモデル化するコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T13:16:24Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data [8.115323786541078]
モデルトレーニング中のデータ歪/バイアスに対処することで回帰分析の精度を向上させることを目的としている。
回帰分析のための勾配降下モデルトレーニングを最適化するために,変分集中損失再重み付け法(VILoss)を提案する。
論文 参考訳(メタデータ) (2021-09-14T10:22:21Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
データ拡張によるトレーニングは、リスクとその勾配をよりよく見積もることを示し、データ拡張でトレーニングされたモデルに対して、PAC-Bayes一般化を提供する。
また,データ拡張と比べ,平均化は凸損失を伴う場合の一般化誤差を低減し,PAC-Bayes境界を狭めることを示した。
論文 参考訳(メタデータ) (2020-05-01T02:08:58Z) - Saliency-based Weighted Multi-label Linear Discriminant Analysis [101.12909759844946]
複数ラベルの分類課題を解決するために,LDA(Linear Discriminant Analysis)の新たな変種を提案する。
提案手法は,個々の試料の重量を定義する確率モデルに基づく。
サリエンシに基づく重み付きマルチラベル LDA アプローチは,様々なマルチラベル分類問題の性能改善につながることが示されている。
論文 参考訳(メタデータ) (2020-04-08T19:40:53Z) - Improving Covariance-Regularized Discriminant Analysis for EHR-based
Predictive Analytics of Diseases [20.697847129363463]
任意の分布を持つデータを分類するためのLDAの精度を理解する解析モデルについて検討する。
また、HDLSSデータのために開発された最先端のLDA手法より優れた新しいLDA分類器De-Sparseを提案する。
論文 参考訳(メタデータ) (2016-10-18T06:11:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。