Prediction of Sentinel-2 multi-band imagery with attention BiLSTM for continuous earth surface monitoring
- URL: http://arxiv.org/abs/2407.00834v1
- Date: Sun, 30 Jun 2024 21:07:11 GMT
- Title: Prediction of Sentinel-2 multi-band imagery with attention BiLSTM for continuous earth surface monitoring
- Authors: Weiying Zhao, Natalia Efremova,
- Abstract summary: This study proposes a framework based on an attention Bidirectional Long Short-Term Memory (BiLSTM) network for predicting multiband images.
Our model can forecast target images on user-defined dates, including future dates and periods characterized by persistent cloud cover.
- Score: 0.0
- License:
- Abstract: Continuous monitoring of crops and forecasting crop conditions through time series analysis is crucial for effective agricultural management. This study proposes a framework based on an attention Bidirectional Long Short-Term Memory (BiLSTM) network for predicting multiband images. Our model can forecast target images on user-defined dates, including future dates and periods characterized by persistent cloud cover. By focusing on short sequences within a sequence-to-one forecasting framework, the model leverages advanced attention mechanisms to enhance prediction accuracy. Our experimental results demonstrate the model's superior performance in predicting NDVI, multiple vegetation indices, and all Sentinel-2 bands, highlighting its potential for improving remote sensing data continuity and reliability.
Related papers
- Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon [0.0]
This study presents a comprehensive methodology for modeling and forecasting the historical time series of active fire spots detected by the AQUA_M-T satellite in the Amazon, Brazil.
The approach employs a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict the monthly accumulations of daily detected active fire spots.
arXiv Detail & Related papers (2024-09-04T13:11:59Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - VN-Net: Vision-Numerical Fusion Graph Convolutional Network for Sparse Spatio-Temporal Meteorological Forecasting [12.737085738169164]
VN-Net is the first attempt to introduce GCN method to utilize multi-modal data for better handling sparse-temporal meteorological forecasting.
VN-Net outperforms state-of-the-art by a significant margin on mean absolute error (MAE) and root mean square error (RMSE) for temperature, relative humidity, and forecasting.
arXiv Detail & Related papers (2024-01-26T12:41:57Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - MUSE-VAE: Multi-Scale VAE for Environment-Aware Long Term Trajectory
Prediction [28.438787700968703]
Conditional MUSE offers diverse and simultaneously more accurate predictions compared to the current state-of-the-art.
We demonstrate these assertions through a comprehensive set of experiments on nuScenes and SDD benchmarks as well as PFSD, a new synthetic dataset.
arXiv Detail & Related papers (2022-01-18T18:40:03Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
We investigate ensembling techniques in forecasting and examine their potential for use in nonseasonal time-series.
We propose using late data fusion, using a stacked ensemble of two forecasting models and two meta-features that prove their predictive power during a preliminary forecasting stage.
arXiv Detail & Related papers (2021-08-19T14:44:46Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z) - Panoptic Segmentation Forecasting [71.75275164959953]
Our goal is to forecast the near future given a set of recent observations.
We think this ability to forecast, i.e., to anticipate, is integral for the success of autonomous agents.
We develop a two-component model: one component learns the dynamics of the background stuff by anticipating odometry, the other one anticipates the dynamics of detected things.
arXiv Detail & Related papers (2021-04-08T17:59:16Z) - Two-Stage Framework for Seasonal Time Series Forecasting [9.359683664929957]
Seasonal time series Forecasting remains a challenging problem due to the long-term dependency from seasonality.
We propose a two-stage framework to forecast univariable seasonal time series.
We show that incorporating the intermediate results generated in the first stage to existing forecast models can effectively enhance their prediction performance.
arXiv Detail & Related papers (2021-03-03T02:53:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.