論文の概要: SecureSpectra: Safeguarding Digital Identity from Deep Fake Threats via Intelligent Signatures
- arxiv url: http://arxiv.org/abs/2407.00913v1
- Date: Mon, 1 Jul 2024 02:36:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 01:07:34.791232
- Title: SecureSpectra: Safeguarding Digital Identity from Deep Fake Threats via Intelligent Signatures
- Title(参考訳): SecureSpectra: インテリジェント署名によるディープフェイク脅威からのデジタルIDの保護
- Authors: Oguzhan Baser, Kaan Kale, Sandeep P. Chinchali,
- Abstract要約: DeepFake(DF)オーディオモデルは、音声認識システムに重大な脅威をもたらす。
音声に不可逆なシグネチャを埋め込んでDF脅威に対処する防御機構SecureSpectraを導入する。
Mozilla Common Voice、LibriSpeech、VoxCelebのデータセットに対する評価では、SecureSpectraの優れたパフォーマンスを示し、検出精度が最大71%向上した。
- 参考スコア(独自算出の注目度): 1.6874375111244329
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Advancements in DeepFake (DF) audio models pose a significant threat to voice authentication systems, leading to unauthorized access and the spread of misinformation. We introduce a defense mechanism, SecureSpectra, addressing DF threats by embedding orthogonal, irreversible signatures within audio. SecureSpectra leverages the inability of DF models to replicate high-frequency content, which we empirically identify across diverse datasets and DF models. Integrating differential privacy into the pipeline protects signatures from reverse engineering and strikes a delicate balance between enhanced security and minimal performance compromises. Our evaluations on Mozilla Common Voice, LibriSpeech, and VoxCeleb datasets showcase SecureSpectra's superior performance, outperforming recent works by up to 71% in detection accuracy. We open-source SecureSpectra to benefit the research community.
- Abstract(参考訳): DeepFake(DF)オーディオモデルの進歩は、音声認証システムに重大な脅威をもたらし、不正アクセスと誤報の拡散につながる。
音声に直交的かつ不可逆なシグネチャを埋め込むことにより、DFの脅威に対処する防御機構SecureSpectraを導入する。
SecureSpectraは、DFモデルが高周波コンテンツを複製できないことを活用し、さまざまなデータセットやDFモデルで実証的に識別します。
パイプラインに差分プライバシーを統合することは、リバースエンジニアリングからシグネチャを保護し、強化されたセキュリティと最小パフォーマンスの妥協との間に微妙なバランスを取る。
Mozilla Common Voice、LibriSpeech、VoxCelebのデータセットに対する評価では、SecureSpectraの優れたパフォーマンスを示し、検出精度が最大71%向上した。
研究コミュニティに利益をもたらすために、SecureSpectraをオープンソースにしています。
関連論文リスト
- Lost and Found in Speculation: Hybrid Speculative Vulnerability Detection [15.258238125090667]
本稿では,IFT(Information Flow Tracking)とハードウェアファジィを構成する,新たなシリコン前検証手法であるSpecureを紹介し,投機的実行リークに対処する。
Specureは、RISC-V BOOMプロセッサのこれまで見過ごされていた投機的実行脆弱性を特定し、既存のファジィ技術よりも6.45倍高速な脆弱性検索空間を探索する。
論文 参考訳(メタデータ) (2024-10-29T21:42:06Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
本稿では,この脆弱性をアライメントプロセス中に不特定性に対処する新たな視点を提案する。
本稿では,報酬の相違の程度を定量化し,その有効性を実証する指標ReGapを紹介する。
ReMissは、報酬ミスの空間で敵のプロンプトを生成する自動レッドチームリングシステムである。
論文 参考訳(メタデータ) (2024-06-20T15:12:27Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - Gait-Based Privacy Protection for Smart Wearable Devices [7.358293252870294]
既存の歩行識別手法は、歩行特徴のプライバシーを保護するために、精度が低く、無視されている。
歩行識別段階が通過した後、歩行特徴をキーとして使用する安全なメッセージ対話を可能にする生体認証方式を提案する。
論文 参考訳(メタデータ) (2024-02-24T12:05:42Z) - An Open Patch Generator based Fingerprint Presentation Attack Detection
using Generative Adversarial Network [3.5558308387389626]
自動指紋認識システム(AFRS)のセンサに本物の指紋の偽造を提示することによる脅威の一つに、提示攻撃(PA)または偽造(spoofing)がある。
本稿では、GAN(Generative Adversarial Network)を用いて、提案したOpen Patch Generator(OPG)から生成されたスプーフサンプルを用いてデータセットを増強するCNNベースの手法を提案する。
96.20%、94.97%、92.90%の精度は、それぞれLivDetプロトコルのシナリオの下で、LivDet 2015、2017、2019データベースで達成されている。
論文 参考訳(メタデータ) (2023-06-06T10:52:06Z) - ConvNext Based Neural Network for Anti-Spoofing [6.047242590232868]
自動話者認証(ASV)は、実生活においてアイデンティティ認証に広く用いられている。
音声変換, 音声アルゴリズム, 記録装置の品質向上などにより, ASVシステムはスプーフ攻撃に対して脆弱である。
論文 参考訳(メタデータ) (2022-09-14T05:53:37Z) - Certified Adversarial Defenses Meet Out-of-Distribution Corruptions:
Benchmarking Robustness and Simple Baselines [65.0803400763215]
この研究は、最先端のロバストモデルがアウト・オブ・ディストリビューションデータに遭遇した場合、敵のロバスト性がどのように変化を保証しているかを批判的に検証する。
本稿では,トレーニングデータのスペクトルカバレッジを改善するために,新たなデータ拡張方式であるFourierMixを提案する。
また,FourierMixの拡張により,様々なOODベンチマークにおいて,より優れたロバスト性保証を実現することが可能となる。
論文 参考訳(メタデータ) (2021-12-01T17:11:22Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
フェース・アンチ・スプーフィング(FAS)は、顔認識システムが提示攻撃を防ぐ上で重要な役割を担っている。
既存のフェース・アンチ・スプーフィング・データセットは、アイデンティティと重要なばらつきが不十分なため、多様性を欠いている。
我々は「生成によるアンチ・スプーフィング」によりこの問題に対処するデュアル・スポット・ディアンタングメント・ジェネレーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:36:59Z) - Aurora Guard: Reliable Face Anti-Spoofing via Mobile Lighting System [103.5604680001633]
紙写真やデジタルビデオの高解像度レンダリングリプレイに対する反偽造は、未解決の問題だ。
オーロラガード(Aurora Guard, AG)と呼ばれる, シンプルだが効果的な顔保護システムを提案する。
論文 参考訳(メタデータ) (2021-02-01T09:17:18Z) - Stay Connected, Leave no Trace: Enhancing Security and Privacy in WiFi
via Obfuscating Radiometric Fingerprints [8.89054576694426]
WiFiチップセットの固有のハードウェア欠陥は、送信された信号に現れ、ユニークなラジオメトリック指紋をもたらす。
近年の研究では、市販品で容易に実装可能な実用的な指紋認証ソリューションが提案されている。
解析的および実験的に、これらのソリューションは偽造攻撃に対して非常に脆弱であることを示す。
本稿では, RF-Veilを提案する。RF-Veilは, 偽造攻撃に対して堅牢なだけでなく, ユーザのプライバシーも保護する。
論文 参考訳(メタデータ) (2020-11-25T11:10:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。