Neural Conditional Probability for Uncertainty Quantification
- URL: http://arxiv.org/abs/2407.01171v2
- Date: Sat, 31 May 2025 08:54:41 GMT
- Title: Neural Conditional Probability for Uncertainty Quantification
- Authors: Vladimir R. Kostic, Karim Lounici, Gregoire Pacreau, Pietro Novelli, Giacomo Turri, Massimiliano Pontil,
- Abstract summary: We introduce Neural Conditional Probability (NCP), an operator-theoretic approach to learning conditional distributions.<n>By leveraging the approximation capabilities of neural networks, NCP efficiently handles a wide variety of com- plex probability distributions.<n>In experiments, we show that NCP with a 2-hidden-layer network matches or outperforms leading methods.
- Score: 22.951644463554352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Neural Conditional Probability (NCP), an operator-theoretic approach to learning conditional distributions with a focus on statistical inference tasks. NCP can be used to build conditional confidence regions and extract key statistics such as conditional quantiles, mean, and covariance. It offers streamlined learning via a single unconditional training phase, allowing efficient inference without the need for retraining even when conditioning changes. By leveraging the approximation capabilities of neural networks, NCP efficiently handles a wide variety of com- plex probability distributions. We provide theoretical guarantees that ensure both optimization consistency and statistical accuracy. In experiments, we show that NCP with a 2-hidden-layer network matches or outperforms leading methods. This demonstrates that a a minimalistic architecture with a theoretically grounded loss can achieve competitive results, even in the face of more complex architectures.
Related papers
- Uncertainty Quantification with the Empirical Neural Tangent Kernel [12.388707890314539]
We propose a post-hoc, sampling-based UQ method for over- parameterized networks at the end of training.
We demonstrate that our method effectively approximates the posterior of a Gaussian process using the empirical Neural Tangent Kernel.
We show that our method not only outperforms competing approaches in computational efficiency (often reducing costs by multiple factors) but also maintains state-of-the-art performance across a variety of UQ metrics for both regression and classification tasks.
arXiv Detail & Related papers (2025-02-05T04:01:34Z) - Conformal Risk Minimization with Variance Reduction [37.74931189657469]
Conformal prediction (CP) is a distribution-free framework for achieving probabilistic guarantees on black-box models.
Recent research efforts have focused on optimizing CP efficiency during training.
We formalize this concept as the problem of conformal risk minimization.
arXiv Detail & Related papers (2024-11-03T21:48:15Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Gradient-free variational learning with conditional mixture networks [39.827869318925494]
Conditional mixture networks (CMNs) are suitable for fast, gradient-free inference and can solve complex classification tasks.
We validate this approach by training two-layer CMNs on standard benchmarks from the UCI repository.
Our method, CAVI-CMN, achieves competitive and often superior predictive accuracy compared to maximum likelihood estimation (MLE) with backpropagation.
arXiv Detail & Related papers (2024-08-29T10:43:55Z) - Generative Conditional Distributions by Neural (Entropic) Optimal Transport [12.152228552335798]
We introduce a novel neural entropic optimal transport method designed to learn generative models of conditional distributions.
Our method relies on the minimax training of two neural networks.
Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques.
arXiv Detail & Related papers (2024-06-04T13:45:35Z) - High Confidence Level Inference is Almost Free using Parallel Stochastic
Optimization [16.38026811561888]
This paper introduces a novel inference method focused on constructing confidence intervals with efficient computation and fast convergence to the nominal level.
Our method requires minimal additional computation and memory beyond the standard updating of estimates, making the inference process almost cost-free.
arXiv Detail & Related papers (2024-01-17T17:11:45Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
We design a predictive layer for structured-output prediction (SOP)
It can be plugged into any neural network guaranteeing its predictions are consistent with a set of predefined symbolic constraints.
Our Semantic Probabilistic Layer (SPL) can model intricate correlations, and hard constraints, over a structured output space.
arXiv Detail & Related papers (2022-06-01T12:02:38Z) - A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness [33.09831377640498]
We study approaches to improve uncertainty property of a single network, based on a single, deterministic representation.
We propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs.
On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection.
arXiv Detail & Related papers (2022-05-01T05:46:13Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Confidence-Aware Learning for Deep Neural Networks [4.9812879456945]
We propose a method of training deep neural networks with a novel loss function, named Correctness Ranking Loss.
It regularizes class probabilities explicitly to be better confidence estimates in terms of ordinal ranking according to confidence.
It has almost the same computational costs for training as conventional deep classifiers and outputs reliable predictions by a single inference.
arXiv Detail & Related papers (2020-07-03T02:00:35Z) - Scalable Uncertainty for Computer Vision with Functional Variational
Inference [18.492485304537134]
We leverage the formulation of variational inference in function space.
We obtain predictive uncertainty estimates at the cost of a single forward pass through any chosen CNN architecture.
We propose numerically efficient algorithms which enable fast training in the context of high-dimensional tasks.
arXiv Detail & Related papers (2020-03-06T19:09:42Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.