論文の概要: A Collaborative, Human-Centred Taxonomy of AI, Algorithmic, and Automation Harms
- arxiv url: http://arxiv.org/abs/2407.01294v2
- Date: Sat, 09 Nov 2024 12:00:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:06:34.370665
- Title: A Collaborative, Human-Centred Taxonomy of AI, Algorithmic, and Automation Harms
- Title(参考訳): AI、アルゴリズム、自動化の協調的、人間中心の分類法
- Authors: Gavin Abercrombie, Djalel Benbouzid, Paolo Giudici, Delaram Golpayegani, Julio Hernandez, Pierre Noro, Harshvardhan Pandit, Eva Paraschou, Charlie Pownall, Jyoti Prajapati, Mark A. Sayre, Ushnish Sengupta, Arthit Suriyawongkul, Ruby Thelot, Sofia Vei, Laura Waltersdorfer,
- Abstract要約: 本稿では、AI、アルゴリズム、自動化の有害性について、協調的で人間中心の分類について紹介する。
我々は、既存のものは価値はあるが、狭く、不明瞭であり、しばしば一般大衆のニーズを見落としていると論じている。
- 参考スコア(独自算出の注目度): 2.411037855204708
- License:
- Abstract: This paper introduces a collaborative, human-centred taxonomy of AI, algorithmic and automation harms. We argue that existing taxonomies, while valuable, can be narrow, unclear, typically cater to practitioners and government, and often overlook the needs of the wider public. Drawing on existing taxonomies and a large repository of documented incidents, we propose a taxonomy that is clear and understandable to a broad set of audiences, as well as being flexible, extensible, and interoperable. Through iterative refinement with topic experts and crowdsourced annotation testing, we propose a taxonomy that can serve as a powerful tool for civil society organisations, educators, policymakers, product teams and the general public. By fostering a greater understanding of the real-world harms of AI and related technologies, we aim to increase understanding, empower NGOs and individuals to identify and report violations, inform policy discussions, and encourage responsible technology development and deployment.
- Abstract(参考訳): 本稿では、AI、アルゴリズム、自動化の有害性について、協調的、人間中心の分類について紹介する。
我々は、既存の分類学は価値はあるものの、狭く、不明瞭であり、通常は実践者や政府にとって必要であり、しばしば一般大衆のニーズを見落としていると論じている。
既存の分類学と文書化されたインシデントの大きなリポジトリを参考に,幅広いオーディエンスに対して明確かつ理解可能な分類法を提案し,柔軟性,拡張性,相互運用性を示した。
トピックの専門家による反復的な改善とクラウドソースによるアノテーションテストを通じて,我々は市民社会の組織,教育者,政策立案者,製品チーム,一般大衆の強力なツールとして機能する分類法を提案する。
AIとその関連技術の現実世界の害に対する理解を深めることにより、私たちは理解を高め、NGOや個人に違反を特定し報告させ、政策に関する議論を伝え、責任ある技術開発とデプロイメントを促進することを目指しています。
関連論文リスト
- Vernacularizing Taxonomies of Harm is Essential for Operationalizing Holistic AI Safety [0.0]
AI倫理と安全原則とフレームワークの運用は、潜在的な利益を実現し、AIシステムによる潜在的な害を軽減するために不可欠である。
我々はまた、専門分野に特化したAI安全運用において容易に実施できるように、分類学を地域カテゴリーに移行する必要があると論じている。
人権に関する人類学の新たな理論から、我々は「白化」のプロセスがこのギャップを埋めるのに役立つと提案する。
論文 参考訳(メタデータ) (2024-10-21T22:47:48Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Exploiting the Margin: How Capitalism Fuels AI at the Expense of Minoritized Groups [0.0]
本稿では、資本主義、人種的不正、人工知能(AI)の関係について考察する。
それは、AIが時代遅れの搾取のための現代的な乗り物として機能する、と論じている。
本論文は、社会正義と株式を技術デザインと政策の核心に組み込むアプローチを推進している。
論文 参考訳(メタデータ) (2024-03-10T22:40:07Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
本報告では、生成AIと法に関する第1回ワークショップ(GenLaw)の開催状況について述べる。
コンピュータサイエンスと法学の実践者や学者の学際的なグループが集まり、ジェネレーティブAI法がもたらす技術的、教義的、政策上の課題について議論した。
論文 参考訳(メタデータ) (2023-11-11T04:13:37Z) - General Purpose Artificial Intelligence Systems (GPAIS): Properties,
Definition, Taxonomy, Societal Implications and Responsible Governance [16.030931070783637]
汎用人工知能システム(GPAIS)は、これらのAIシステムを指すものとして定義されている。
これまで、人工知能の可能性は、まるで人間であるかのように知的タスクを実行するのに十分強力であり、あるいはそれを改善することさえ可能であり、いまだに願望、フィクションであり、我々の社会にとっての危険であると考えられてきた。
本研究は,GPAISの既存の定義について論じ,その特性や限界に応じて,GPAISの種類間で段階的な分化を可能にする新しい定義を提案する。
論文 参考訳(メタデータ) (2023-07-26T16:35:48Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel
Topic Clusters [57.59286394188025]
我々はTaxoComというトピック分類の完成のための新しい枠組みを提案する。
TaxoComは、用語と文書の新たなサブトピッククラスタを発見する。
2つの実世界のデータセットに関する包括的実験により、TaxoComは、用語の一貫性とトピックカバレッジの観点から、高品質なトピック分類を生成するだけでなく、高品質なトピック分類を生成することを実証した。
論文 参考訳(メタデータ) (2022-01-18T07:07:38Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Large-scale Taxonomy Induction Using Entity and Word Embeddings [13.30719395448771]
本論文では,実体とテキスト埋め込みを用いた知識からの自動推定抽出手法 TIEmb を提案する。
本稿では,Wide Web の大部分から抽出されたクラス置換関係のデータベースである WebIsA データベースにアプローチを適用し,Person and Place ドメインの階層を抽出する。
論文 参考訳(メタデータ) (2021-05-04T05:53:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。