論文の概要: Exploring FPGA designs for MX and beyond
- arxiv url: http://arxiv.org/abs/2407.01475v1
- Date: Mon, 1 Jul 2024 17:07:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 20:31:30.937070
- Title: Exploring FPGA designs for MX and beyond
- Title(参考訳): MX以降のFPGA設計の探索
- Authors: Ebby Samson, Naveen Mellempudi, Wayne Luk, George A. Constantinides,
- Abstract要約: 我々は,Open Compute Project MX 規格で定義された演算系の最初のオープンソースFPGA実装について記述し,評価する。
私たちの設計では、MXフォーマットへの変換のためのすべての標準の具体的なフォーマットを完全にサポートしています。
我々はBrevitasライブラリと統合された新しい標準への量子化のためのオープンソースのPytorchライブラリをリリースする。
- 参考スコア(独自算出の注目度): 6.843913224130847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A number of companies recently worked together to release the new Open Compute Project MX standard for low-precision computation, aimed at efficient neural network implementation. In this paper, we describe and evaluate the first open-source FPGA implementation of the arithmetic defined in the standard. Our designs fully support all the standard's concrete formats for conversion into and out of MX formats and for the standard-defined arithmetic operations, as well as arbitrary fixed-point and floating-point formats. Certain elements of the standard are left as implementation-defined, and we present the first concrete FPGA-inspired choices for these elements, which we outline in the paper. Our library of optimized hardware components is available open source, and can be used to build larger systems. For this purpose, we also describe and release an open-source Pytorch library for quantization into the new standard, integrated with the Brevitas library so that the community can develop novel neural network designs quantized with MX formats in mind. We demonstrate the usability and efficacy of our libraries via the implementation of example neural networks such as ResNet-18 on the ImageNet ILSVRC12 dataset. Our testing shows that MX is very effective for formats such as INT5 or FP6 which are not natively supported on GPUs. This gives FPGAs an advantage as they have the flexibility to implement a custom datapath and take advantage of the smaller area footprints offered by these formats.
- Abstract(参考訳): 最近、多くの企業が協力して、効率的なニューラルネットワークの実装を目的とした低精度計算のための新しいOpen Compute Project MX標準をリリースした。
本稿では,この標準で定義された演算系の最初のオープンソースFPGA実装について記述し,評価する。
我々の設計では、MXフォーマットへの変換や標準定義の演算、任意の固定点および浮動小数点形式への変換のための標準の具体的なフォーマットを完全にサポートしています。
実装定義として標準の特定の要素が残されており、これらの要素に対してFPGAに触発された最初の具体的な選択が論文で概説されている。
最適化されたハードウェアコンポーネントのライブラリはオープンソースであり、より大きなシステムを構築するために使用できます。
この目的のために、コミュニティがMXフォーマットを念頭に置いて量子化された新しいニューラルネットワーク設計を開発することができるように、Brevitasライブラリと統合された新しい標準への量子化のためのオープンソースのPytorchライブラリを記述、リリースする。
我々は、ImageNet ILSVRC12データセット上のResNet-18などのニューラルネットワークの実装を通じて、ライブラリのユーザビリティと有効性を実証する。
我々のテストによると、MXはGPUでネイティブにサポートされていないINT5やFP6のようなフォーマットに非常に効果的である。
これによりFPGAは、カスタムなデータパスを実装し、これらのフォーマットが提供するより小さな領域のフットプリントを活用できる柔軟性を持つという利点がある。
関連論文リスト
- Investigating Resource-efficient Neutron/Gamma Classification ML Models Targeting eFPGAs [0.0]
オープンソース組み込みFPGA(eFPGA)フレームワークは、ハードウェアに機械学習モデルを実装するための、代替的で柔軟な経路を提供する。
完全連結ニューラルネットワーク(fcNN)と強化決定木(BDT)モデルのeFPGA実装のパラメータ空間について検討する。
この研究結果は、テストチップの一部として統合されるeFPGAファブリックの仕様策定を支援するために使用される。
論文 参考訳(メタデータ) (2024-04-19T20:03:30Z) - UniSparse: An Intermediate Language for General Sparse Format
Customization [13.132033187592349]
スパースフォーマットの表現とカスタマイズを統一した抽象化を提供する中間言語であるUniSparseを提案する。
既存の属性ベースのフレームワークとは異なり、UniSparseはスパーステンソルの論理的表現を低レベルメモリレイアウトから切り離す。
結果として、リッチなフォーマットのカスタマイズは、明確に定義されたクエリ、突然変異、レイアウトプリミティブの小さなセットで簡潔に表現できる。
論文 参考訳(メタデータ) (2024-03-09T05:38:45Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfnはPyTorchライブラリで、このニーズに対処することを目指している。
環境のためのシンプルなAPIと、サンプルと損失のための有用な抽象化を提供する。
論文 参考訳(メタデータ) (2023-05-24T00:20:59Z) - SegNeXt: Rethinking Convolutional Attention Design for Semantic
Segmentation [100.89770978711464]
セマンティックセグメンテーションのための単純な畳み込みネットワークアーキテクチャであるSegNeXtを提案する。
コンボリューションアテンションは、トランスフォーマーの自己認識メカニズムよりも、文脈情報をエンコードするより効率的で効果的な方法であることを示す。
論文 参考訳(メタデータ) (2022-09-18T14:33:49Z) - Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark [11.575901540758574]
我々は,フィールドプログラマブルゲートアレイ(FPGA)プラットフォーム上でのTiny Inference Benchmarkの開発経験を示す。
我々は、FPGA上で最適化されたニューラルネットワークのAIハードウェアコーデックを民主化することを目的として、オープンソースのhls4mlとFINN perJを使用している。
ソリューションはシステムオンチップ(Pynq-Z2)と純粋なFPGA(Arty A7-100T)プラットフォームにデプロイされる。
論文 参考訳(メタデータ) (2022-06-23T15:57:17Z) - GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation [55.55523188090938]
我々はGNNベースのレコメンデーションモデルのベンチマークを行うためのオープンソースのフレームワークであるGRecXを紹介する。
GRecXは、GNNベースのレコメンデーションベンチマークを構築するためのコアライブラリと、人気のあるGNNベースのレコメンデーションモデルの実装で構成されている。
我々はGRecXを用いて実験を行い、実験の結果、GRecXはGNNベースの推薦基準を効率的かつ統一的にトレーニングし、ベンチマークすることができることを示した。
論文 参考訳(メタデータ) (2021-11-19T17:45:46Z) - A fully pipelined FPGA accelerator for scale invariant feature transform
keypoint descriptor matching, [0.0]
SIFTキーポイント記述子マッチングのための完全パイプラインハードウェアアクセラレータアーキテクチャを設計する。
提案するハードウェアアーキテクチャは、完全にパイプライン化された実装に必要なメモリ帯域を適切に処理することができる。
私たちのハードウェア実装は、同等のソフトウェアアプローチの15.7倍高速です。
論文 参考訳(メタデータ) (2020-12-17T15:29:41Z) - Fully Convolutional Networks for Panoptic Segmentation [91.84686839549488]
そこで我々は,Panoptic FCNという概念的,シンプルで,強力で,効率的なパノプティックセグメンテーションフレームワークを提案する。
我々のアプローチは、統一された完全な畳み込みパイプラインにおいて、前景や背景を表現し、予測することを目的としています。
Panoptic FCNは、提案されたカーネルジェネレータで、各オブジェクトインスタンスまたは物カテゴリを特定のカーネル重みにエンコードする。
論文 参考訳(メタデータ) (2020-12-01T18:31:41Z) - CNN2Gate: Toward Designing a General Framework for Implementation of
Convolutional Neural Networks on FPGA [0.3655021726150368]
本稿では,FPGAターゲットに対するCNNモデルのコンパイルを支援する統合フレームワークを提案する。
CNN2Gateは商用ベンダーが提供するFPGAのOpenCL合成ワークフローを利用する。
本稿では,Intel FPGAプラットフォーム上でのAlexNetとVGG-16の自動合成と設計空間探索の結果について報告する。
論文 参考訳(メタデータ) (2020-04-06T01:57:53Z) - Benchmarking Graph Neural Networks [75.42159546060509]
グラフニューラルネットワーク(GNN)は、グラフ上のデータから分析および学習するための標準ツールキットとなっている。
成功している分野が主流で信頼性を持つようになるためには、進捗を定量化するためにベンチマークを開発する必要がある。
GitHubリポジトリは1,800のスターと339のフォークに到達し、提案されているオープンソースフレームワークの有用性を実証している。
論文 参考訳(メタデータ) (2020-03-02T15:58:46Z) - Neural Network Compression Framework for fast model inference [59.65531492759006]
我々は、ニューラルネットワーク圧縮フレームワーク(NNCF)と呼ばれる、微調整によるニューラルネットワーク圧縮のための新しいフレームワークを提案する。
様々なネットワーク圧縮手法の最近の進歩を活用し、空間性、量子化、双項化などのいくつかの実装を行っている。
フレームワークは、トレーニングサンプル内に提供され、あるいは既存のトレーニングコードにシームレスに統合可能なスタンドアロンパッケージとして使用することができる。
論文 参考訳(メタデータ) (2020-02-20T11:24:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。