論文の概要: cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM
- arxiv url: http://arxiv.org/abs/2407.01574v1
- Date: Wed, 29 May 2024 15:12:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:18:55.496358
- Title: cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM
- Title(参考訳): cryoSPHERE:Cryo EMからの単一粒子の不均一な再構成
- Authors: Gabriel Ducrocq, Lukas Grunewald, Sebastian Westenhoff, Fredrik Lindsten,
- Abstract要約: 単一粒子低温電子顕微鏡(cryo EM)は、与えられたタンパク質の多数の画像を取得する強力なツールである。
本稿では,タンパク質構造を入力とする深層学習手法であるCryoSPHEREを紹介する。
- 参考スコア(独自算出の注目度): 9.887133861477233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The three-dimensional structure of a protein plays a key role in determining its function. Methods like AlphaFold have revolutionized protein structure prediction based only on the amino-acid sequence. However, proteins often appear in multiple different conformations, and it is highly relevant to resolve the full conformational distribution. Single-particle cryo-electron microscopy (cryo EM) is a powerful tool for capturing a large number of images of a given protein, frequently in different conformations (referred to as particles). The images are, however, very noisy projections of the protein, and traditional methods for cryo EM reconstruction are limited to recovering a single, or a few, conformations. In this paper, we introduce cryoSPHERE, a deep learning method that takes as input a nominal protein structure, e.g. from AlphaFold, learns how to divide it into segments, and how to move these as approximately rigid bodies to fit the different conformations present in the cryo EM dataset. This formulation is shown to provide enough constraints to recover meaningful reconstructions of single protein structures. This is illustrated in three examples where we show consistent improvements over the current state-of-the-art for heterogeneous reconstruction.
- Abstract(参考訳): タンパク質の3次元構造は、その機能を決定する上で重要な役割を果たす。
AlphaFoldのような手法はアミノ酸配列のみに基づくタンパク質構造予測に革命をもたらした。
しかし、タンパク質はしばしば複数の異なるコンフォメーションに出現し、完全なコンフォメーション分布を解決することは極めて重要である。
単一粒子の低温電子顕微鏡(cryo EM)は、与えられたタンパク質の多数の画像をキャプチャする強力なツールであり、しばしば異なるコンフォーメーション(粒子として参照)を持つ。
しかし、この画像はタンパク質の非常にノイズの多い投射であり、Cryo EM再構成の伝統的な方法は、1つまたは数個のコンフォメーションの回復に限られている。
本稿では,AlphaFoldのタンパク質構造を入力として利用する深層学習手法であるCryoSPHEREを紹介する。
この定式化は、単一のタンパク質構造の有意義な再構成を取り戻すのに十分な制約をもたらすことが示されている。
異種再建の現況に対して一貫した改善が見られた例を3例に挙げる。
関連論文リスト
- FFF: Fragments-Guided Flexible Fitting for Building Complete Protein
Structures [10.682516227941592]
タンパク質構造予測とタンパク質構造認識を柔軟に組み合わせた新しいFFF法を提案する。
まず、入力された3次元Cryo-EMマップから様々な構造的特徴を捉えるために、マルチレベル認識ネットワークを使用する。
次に、これらの特徴に基づいて擬似ペプチドベクターとタンパク質配列アライメント法を用いてタンパク質構造断片を生成する。
論文 参考訳(メタデータ) (2023-08-07T15:10:21Z) - CryoChains: Heterogeneous Reconstruction of Molecular Assembly of
Semi-flexible Chains from Cryo-EM Images [3.0828074702828623]
分子鎖の剛体変換により生体分子の大きな変形をコードするCryoChainsを提案する。
ヒトGABAtextsubscriptBおよび熱ショックタンパク質のデータ実験により、CryoChainsは生体分子の不均一な構造を生化学的に定量化できることが示された。
論文 参考訳(メタデータ) (2023-06-12T17:57:12Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
抗体の特異性は、その相補性決定領域(CDR)によって決定される
従来の研究では、複雑な技術を使ってCDRを生成するが、不適切な幾何学的モデリングに悩まされている。
本稿では,CDRの1次元配列と3次元構造を1ショットで共設計できるテクスタイスシンプルで効果的なモデルを提案する。
論文 参考訳(メタデータ) (2023-04-21T13:24:26Z) - EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction [49.674494450107005]
標的タンパク質の結合部位の予測は、薬物発見の基本的な役割を担っている。
既存のディープラーニング手法の多くは、タンパク質を原子をボクセルに空間的にクラスタリングすることで3D画像とみなしている。
本研究では,結合サイト予測のためのE3-equivariant Graph Neural Network(GNN)であるEquiPocketを提案する。
論文 参考訳(メタデータ) (2023-02-23T17:18:26Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
我々は、剛体タンパク質ドッキング、すなわち、個々の非結合構造からタンパク質-タンパク質複合体の3次元構造を計算的に予測する。
本研究では, タンパク質の回転と翻訳を予測し, 1つのタンパク質をドッキング位置に置くために, ペアワイズ非独立なSE(3)-等変グラフマッチングネットワークを設計する。
我々のモデルはEquiDockと呼ばれ、結合ポケットを近似し、キーポイントマッチングとアライメントを用いてドッキングポーズを予測する。
論文 参考訳(メタデータ) (2021-11-15T18:46:37Z) - Disentangling semantic features of macromolecules in Cryo-Electron
Tomography [7.804210995893708]
マクロ分子のセマンティックな特徴を明示的に切り離すことは、マクロ分子の下流解析を行う上で重要である。
本稿では, 高分子の構造, 配向, シフトを明示的に切り離す3次元空間変動オートエンコーダを提案する。
論文 参考訳(メタデータ) (2021-06-27T10:41:26Z) - Deep learning based mixed-dimensional GMM for characterizing variability
in CryoEM [0.0]
CryoEMは、コンフォメーション状態とコンフォメーション状態の異なる個々のマクロ分子を直接可視化する。
タンパク質や複合体のコンフォメーションランドスケープを決定する機械学習アルゴリズムを提案する。
本手法をいくつかの異なる生体分子系に応用し,様々なスケールで組成変化およびコンフォメーション変化を探索する。
論文 参考訳(メタデータ) (2021-01-25T19:05:23Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。