論文の概要: Contrastive independent component analysis
- arxiv url: http://arxiv.org/abs/2407.02357v1
- Date: Tue, 2 Jul 2024 15:24:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-03 14:46:41.870588
- Title: Contrastive independent component analysis
- Title(参考訳): 対照的な独立成分分析
- Authors: Kexin Wang, Aida Maraj, Anna Seigal,
- Abstract要約: コントラスト独立成分分析(cICA)を提案する。
これは、独立成分分析をフォアグラウンドとバックグラウンドにまたがる独立潜伏変数に一般化する。
我々は,cICAの識別可能性について検討し,その性能の可視化とデータ中のパターンの発見を,合成および実世界のデータセットを用いて実証した。
- 参考スコア(独自算出の注目度): 6.348278114271242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visualizing data and finding patterns in data are ubiquitous problems in the sciences. Increasingly, applications seek signal and structure in a contrastive setting: a foreground dataset relative to a background dataset. For this purpose, we propose contrastive independent component analysis (cICA). This generalizes independent component analysis to independent latent variables across a foreground and background. We propose a hierarchical tensor decomposition algorithm for cICA. We study the identifiability of cICA and demonstrate its performance visualizing data and finding patterns in data, using synthetic and real-world datasets, comparing the approach to existing contrastive methods.
- Abstract(参考訳): データ可視化とデータのパターン発見は、科学におけるユビキタスな問題である。
アプリケーションは、背景データセットに対するフォアグラウンドデータセットという、コントラスト的な設定で信号と構造を求める。
そこで本研究では,コントラスト独立成分分析(cICA)を提案する。
これは、独立成分分析をフォアグラウンドとバックグラウンドにまたがる独立潜伏変数に一般化する。
本稿では,cICAの階層的テンソル分解アルゴリズムを提案する。
我々は,cICAの識別可能性について検討し,その性能の可視化データとデータ中のパターンの探索を,合成および実世界のデータセットを用いて実証し,既存のコントラスト法と比較した。
関連論文リスト
- Algebraic Machine Learning: Learning as computing an algebraic decomposition of a task [41.94295877935867]
本稿では,学習の分析を容易にする数学を用いた抽象代数に基づく代替基盤を提案する。
このアプローチでは、タスクとデータのゴールは代数の公理として符号化され、これらの公理とそれらの論理結果のみが成立するモデルが得られる。
我々は、MNIST、FashionMNIST、CIFAR-10、医療画像などの標準データセット上でこの新しい学習原則を検証し、最適化された多層パーセプトロンに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2025-02-27T10:13:42Z) - Spectral Self-supervised Feature Selection [7.052728135831165]
教師なし特徴選択のための自己教師付きグラフベースアプローチを提案する。
提案手法のコアは,グラフラプラシアンの固有ベクトルに単純な処理ステップを適用することで,ロバストな擬似ラベルを計算することである。
我々のアプローチは、外れ値や複雑な部分構造の存在など、困難なシナリオに対して堅牢であることが示されている。
論文 参考訳(メタデータ) (2024-07-12T07:29:08Z) - Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets [11.105392318582677]
本稿では,理論的保証付きデータセットの整列と共同埋め込みの原理的アプローチを提案する。
提案手法は,2つのデータセット間のEOT計画行列の先頭特異ベクトルを利用して,それらの共通基盤構造を抽出する。
EOT計画では,高次元状態において,潜伏変数の位置で評価されたカーネル関数を近似することにより,共有多様体構造を復元する。
論文 参考訳(メタデータ) (2024-07-01T18:48:55Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Integrated Gradient Correlation: a Dataset-wise Attribution Method [0.0]
我々は、IGC(Integrated Gradient correlation)と呼ばれるデータセットワイド属性法を提案する。
IGCは、関連するコンポーネントに対する直接和による領域固有解析を可能にし、さらに全ての属性の和とモデル予測スコア(相関)を関連付ける。
我々は、合成データとfMRIニューラル信号(NSDデータセット)にIGCを応用し、脳内の画像特徴の表現について検討した。
論文 参考訳(メタデータ) (2024-04-22T06:42:21Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - A Spectral Method for Assessing and Combining Multiple Data
Visualizations [13.193958370464683]
与えられたデータセットの複数のビジュアライゼーションを評価し,組み合わせるための効率的なスペクトル法を提案する。
提案手法は,各データ点の周辺構造を保存するための可視化の相対的な性能について,定量的な測定値,可視化固有スコア(en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en:en: en:en:en:en:en:en:en:en:en:en
我々は,複数のシミュレーションおよび実世界のデータセットを分析し,可視化評価のための固有スコアの有効性と,提案したコンセンサス・ビジュアライゼーションの優位性を示す。
論文 参考訳(メタデータ) (2022-10-25T02:13:19Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Another Use of SMOTE for Interpretable Data Collaboration Analysis [8.143750358586072]
データコラボレーション(DC)分析は、複数の機関にわたるプライバシー保護統合分析のために開発された。
本研究では,データ漏洩のリスクを増大させることなく,認識性能を向上させるアンカーデータ構築手法を提案する。
論文 参考訳(メタデータ) (2022-08-26T06:39:13Z) - A Computational Model for Logical Analysis of Data [0.0]
LADは古典的な統計学習技術に代わる興味深いルールベースの学習である。
得られた情報に基づいて,観測データの集合を表現するためのモデルをいくつか提案する。
解析的コンビニティクスにより、所望の確率を関数係数の比として表現することができる。
論文 参考訳(メタデータ) (2022-07-12T16:47:59Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
我々は、通過する太陽系外惑星のスペクトルデータを解析するための教師なし手法に焦点をあてる。
スペクトルデータには、適切な低次元表現を要求する高い相関関係があることが示される。
主成分に基づく興味深い構造、すなわち、異なる化学状態に対応する明確に定義された分岐を明らかにする。
論文 参考訳(メタデータ) (2022-01-07T22:26:33Z) - Interactive Dimensionality Reduction for Comparative Analysis [28.52130400665133]
我々は,新しいDR手法であるULCAをインタラクティブなビジュアルインターフェースと統合する,インタラクティブなDRフレームワークを導入する。
ULCAは差別分析とコントラスト学習という2つのDRスキームを統合し、様々な比較分析タスクをサポートする。
我々は,ULCA結果を対話的に洗練する最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-29T15:05:36Z) - Capturing patterns of variation unique to a specific dataset [68.8204255655161]
対象データセットの1つ以上の比較データセットに対する低次元表現を同定するチューニングフリー手法を提案する。
複数の実験で、単一のバックグラウンドデータセットを持つUCAが、様々なチューニングパラメータを持つcPCAと同じような結果を達成することを示しました。
論文 参考訳(メタデータ) (2021-04-16T15:07:32Z) - Joint Characterization of Multiscale Information in High Dimensional
Data [0.0]
グローバルアプローチとローカルアプローチの相乗効果を生かした多スケール共同評価手法を提案します。
関節の特徴は, PCA や t-sne のいずれからも明らかでない信号の検出と分離が可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T23:33:00Z) - Contrastive analysis for scatter plot-based representations of
dimensionality reduction [0.0]
本稿では,マルチ次元データセットを探索し,クラスタの形成を解釈する手法を提案する。
また,属性がクラスタ形成にどのように影響するかを理解するために使用される統計変数間の関係を視覚的に解釈し,探索する二部グラフも導入する。
論文 参考訳(メタデータ) (2021-01-26T01:16:31Z) - CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
Summarization Systems [121.78477833009671]
データセット間設定下での様々な要約モデルの性能について検討する。
異なるドメインの5つのデータセットに対する11の代表的な要約システムに関する包括的な研究は、モデルアーキテクチャと生成方法の影響を明らかにしている。
論文 参考訳(メタデータ) (2020-10-11T02:19:15Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z) - Learning Stochastic Behaviour from Aggregate Data [52.012857267317784]
集約データから非線形ダイナミクスを学習することは、各個人の完全な軌道が利用できないため、難しい問題である。
本稿では,Fokker Planck Equation (FPE) の弱い形式を用いて,サンプル形式のデータの密度変化を記述する手法を提案する。
このようなサンプルベースのフレームワークでは、偏微分方程式(PDE)FPEを明示的に解くことなく、集約データから非線形ダイナミクスを学習することができる。
論文 参考訳(メタデータ) (2020-02-10T03:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。