論文の概要: RaCIL: Ray Tracing based Multi-UAV Obstacle Avoidance through Composite Imitation Learning
- arxiv url: http://arxiv.org/abs/2407.02520v1
- Date: Mon, 24 Jun 2024 17:43:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-07 13:14:55.078319
- Title: RaCIL: Ray Tracing based Multi-UAV Obstacle Avoidance through Composite Imitation Learning
- Title(参考訳): RaCIL:複合模倣学習による複数UAV障害物回避
- Authors: Harsh Bansal, Vyom Goyal, Bhaskar Joshi, Akhil Gupta, Harikumar Kandath,
- Abstract要約: 本研究では,無人航空機(UAV)における障害物回避の課題を,革新的な模倣学習アプローチによって解決する。
本研究は,障害物検出と回避能力向上におけるレイトレーシングの意義を明らかにするものである。
我々のアプローチは、混雑した環境や動的な環境での高度自律型UAV運用の道を開くものである。
- 参考スコア(独自算出の注目度): 1.934627691560021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we address the challenge of obstacle avoidance for Unmanned Aerial Vehicles (UAVs) through an innovative composite imitation learning approach that combines Proximal Policy Optimization (PPO) with Behavior Cloning (BC) and Generative Adversarial Imitation Learning (GAIL), enriched by the integration of ray-tracing techniques. Our research underscores the significant role of ray-tracing in enhancing obstacle detection and avoidance capabilities. Moreover, we demonstrate the effectiveness of incorporating GAIL in coordinating the flight paths of two UAVs, showcasing improved collision avoidance capabilities. Extending our methodology, we apply our combined PPO, BC, GAIL, and ray-tracing framework to scenarios involving four UAVs, illustrating its scalability and adaptability to more complex scenarios. The findings indicate that our approach not only improves the reliability of basic PPO based obstacle avoidance but also paves the way for advanced autonomous UAV operations in crowded or dynamic environments.
- Abstract(参考訳): 本研究では,PPO(Proximal Policy Optimization)とBC(Behaviment Cloning)とGAIL(Generative Adversarial Imitation Learning)を組み合わせた,光線トレーシング技術を統合した革新的な複合模倣学習手法により,無人航空機(UAV)の障害物回避の課題に対処する。
本研究は,障害物検出と回避能力向上におけるレイトレーシングの意義を明らかにするものである。
さらに,2機のUAVの飛行経路の調整におけるGAILの導入の有効性を実証し,衝突回避能力の向上を示す。
方法論を拡張して、4つのUAVを含むシナリオにPPO、BC、GAIL、およびレイトレーシングフレームワークを併用し、より複雑なシナリオへのスケーラビリティと適応性を示します。
以上の結果から,本手法はPPOによる障害物回避の信頼性を向上させるだけでなく,密集環境や動的環境下での高度自律型UAV操作の道を開くことが示唆された。
関連論文リスト
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents [49.85633804913796]
本稿では,ETOと呼ばれる探索に基づく軌道最適化手法を提案する。
この学習方法はオープンLLMエージェントの性能を向上させるために設計されている。
3つの複雑なタスクに関する実験は、ETOがベースライン性能をはるかに上回っていることを示す。
論文 参考訳(メタデータ) (2024-03-04T21:50:29Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
強化学習アルゴリズムは、これらの課題に対処するための有望なアプローチとして登場した。
そこで本研究では,低コスト単一エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T10:54:02Z) - Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning [7.760962597460447]
本稿では,郊外環境におけるセルラー接続型無人航空機(UAV)の干渉対応共同経路計画と電力配分機構について検討する。
UAVは、そのアップリンクスループットを最大化し、近隣のBSに接続された地上ユーザ機器(UE)への干渉のレベルを最小化することを目的としている。
Q-learning と深層強化学習 (DRL) を併用した逆強化学習 (IRL) による見習い学習手法
論文 参考訳(メタデータ) (2023-06-15T20:50:05Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
オフラインの強化学習は、環境とのさらなるインタラクションなしに、固定データセットから学習を可能にする。
フレキシブルだが十分に調整された完全実装ポリシーの学習を支援するフレームワークを提案する。
D4RLデータセットの実験とアブレーション研究により、我々のフレームワークとアルゴリズム設計の有効性が検証された。
論文 参考訳(メタデータ) (2022-02-19T20:22:04Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle
Avoidance [1.2693545159861856]
UAV障害物回避のための探索を改善するための2つの技術を紹介します。
ひとつは収束に基づくアプローチで、探索されていない動作と時間しきい値を反復して探索と搾取のバランスをとる。
2つ目は、ガウス混合分布を用いて予測された次の状態と比較し、次のアクションを選択するためのガイダンスベースアプローチである。
論文 参考訳(メタデータ) (2021-03-11T01:15:26Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
敵対的訓練は、ディープラーニングモデルに対する敵対的攻撃に対する最も効果的な防御の1つである。
本研究では,超球埋め込み機構をATプロシージャに組み込むことを提唱する。
我々は,CIFAR-10 と ImageNet データセットに対する幅広い敵対攻撃の下で本手法を検証した。
論文 参考訳(メタデータ) (2020-02-20T08:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。