論文の概要: Example-Based Automatic Migration of Continuous Integration Systems
- arxiv url: http://arxiv.org/abs/2407.02644v1
- Date: Tue, 2 Jul 2024 20:19:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 18:14:18.395680
- Title: Example-Based Automatic Migration of Continuous Integration Systems
- Title(参考訳): 実例に基づく継続的統合システムの自動移行
- Authors: Dhia Elhaq Rzig, Alaa Houerbi, Chungha Sung, Foyzul Hassan,
- Abstract要約: 継続的インテグレーション(CI)は、コード変更の統合とテストの高速化に広く採用されているプラクティスです。
開発者はしばしば、マトリックスの構築やロギングの改善といった機能を追求して、CIシステム間で移行する。
この移行は、新しいCIシステムとその構文に関する知識が限られているため、集中的かつエラーを起こしやすい。
本稿では,CIシステムの自動マイグレーションのための新しいアプローチとして,CIMigを提案する。
- 参考スコア(独自算出の注目度): 2.2836654317217326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous Integration (CI) is a widely adopted practice for faster code change integration and testing. Developers often migrate between CI systems in pursuit of features like matrix building or better logging. However, this migration is effort intensive and error-prone owing to limited knowledge of the new CI system and its syntax. Moreover, these migrations require multiple iterations and significant time to achieve stability in the new CI system, and there is insufficient support for the automatic migration of CI configurations. To mitigate this, we propose a novel approach for CI system's automatic migration: CIMig. Our approach utilizes Example-Based mining, where it extracts translation rules and configuration patterns from existing migration examples, and employs them to reproduce this migration in new contexts. To empirically validate and evaluate our approach, we apply it to the migration between Travis CI and GitHub Actions. We gathered learnings from 1001 projects, and then applied them to migrate an evaluation set of 251 projects. This helped us perform a qualitative and quantitative evaluation of CIMig, and we contextualize our results by comparing them with those of the manual-rule-based GitHub Actions Importer. Furthermore, our tool generated files that were rated favorably by developers and saved them an average of 42.4 minutes over the manual migration of these same projects. Our learning-based approach is also more flexible, as proven by our ability to apply it to migrate GitHub Actions files to Travis, which GitHub Actions Importer can not do. We believe CIMig is the first approach of its kin to migrate CI systems and can be applied to other software configuration system migrations. Our replication package is available at [5].
- Abstract(参考訳): 継続的インテグレーション(CI)は、コード変更の統合とテストの高速化に広く採用されているプラクティスです。
開発者はしばしば、マトリックスの構築やロギングの改善といった機能を追求して、CIシステム間で移行する。
しかし、この移行は、新しいCIシステムとその構文に関する知識が限られているため、集中的でエラーを起こしやすい。
さらに、これらの移行には、新しいCIシステムの安定性を達成するために、複数のイテレーションと大幅な時間が必要で、CI設定の自動マイグレーションに対するサポートが不十分である。
これを軽減するために、CIシステムの自動マイグレーションのための新しいアプローチCIMigを提案する。
提案手法では,既存のマイグレーション例から翻訳ルールや構成パターンを抽出し,新たなコンテキストでこのマイグレーションを再現する。
このアプローチを実証的に検証し、評価するために、Travis CIとGitHub Actionsの移行に適用する。
1001プロジェクトから学びを集めて、251プロジェクトの評価セットを移行しました。
これはCIMigの質的かつ定量的な評価に役立ち、手動ルールベースのGitHub Actions Importerと比較することで、結果のコンテキスト化に役立ちました。
さらに、当社のツールは開発者によって好意的に評価されたファイルを生成し、これらの同じプロジェクトの手動移行で平均42.4分節約しました。
私たちの学習ベースのアプローチは、GitHub ActionsファイルをTravisに移行するためにGitHub Actions Importerではできないように、より柔軟であることも証明されています。
CIMigはCIシステムを移行する最初のアプローチであり、他のソフトウェア構成システム移行にも適用できると考えています。
私たちの複製パッケージは[5]で利用可能です。
関連論文リスト
- VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - Towards Modular LLMs by Building and Reusing a Library of LoRAs [64.43376695346538]
マルチタスクデータに対して最適なアダプタライブラリを構築する方法について検討する。
モデルベースクラスタリング(MBC)を導入し,パラメータの類似性に基づいてタスクをグループ化する手法を提案する。
ライブラリを再使用するために,最も関連性の高いアダプタの動的選択を可能にする新しいゼロショットルーティング機構であるArrowを提案する。
論文 参考訳(メタデータ) (2024-05-18T03:02:23Z) - Detecting Continuous Integration Skip : A Reinforcement Learning-based Approach [0.4297070083645049]
継続的統合(CI)プラクティスは、自動ビルドとテストプロセスを採用することで、コード変更のシームレスな統合を促進する。
Travis CIやGitHub Actionsといった一部のフレームワークは、CIプロセスの簡素化と強化に大きく貢献している。
開発者はCI実行に適したコミットやスキップの候補としてコミットを正確にフラグ付けすることの難しさに悩まされ続けている。
論文 参考訳(メタデータ) (2024-05-15T18:48:57Z) - Design2Code: Benchmarking Multimodal Code Generation for Automated Front-End Engineering [74.99736967448423]
私たちは、このタスクのための最初の実世界のベンチマークであるDesign2Codeを構築します。
テストケースとして484の多様な実世界のWebページを手作業でキュレートし、自動評価指標のセットを開発する。
我々の詳細なブレークダウンメトリクスは、入力されたWebページから視覚要素をリコールし、正しいレイアウト設計を生成するモデルがほとんど遅れていることを示している。
論文 参考訳(メタデータ) (2024-03-05T17:56:27Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z) - A Generative AI Assistant to Accelerate Cloud Migration [2.9248916859490173]
Cloud Migration LLMは、移行のパラメータを指定するユーザからの入力を受け入れ、アーキテクチャ図でマイグレーション戦略を出力する。
ユーザ調査によると、移行LLMは、経験の浅いユーザによる適切なクラウド移行プロファイルの発見を支援すると同時に、手作業によるアプローチの複雑さを回避することができる。
論文 参考訳(メタデータ) (2024-01-03T14:13:24Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - Interactive, Iterative, Tooled, Rule-Based Migration of Microsoft Access
to Web Technologies [0.11650821883155184]
私たちは、Microsoft AccessのモノリシックアプリケーションをWebフロントエンドに移行し、バックエンドを生成する作業に取り組んでいます。
開発者がターゲットシステムへのマイグレーションを可能にするために,インタラクティブで反復的,ツーリング,ルールベースのマイグレーションアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-07T06:46:28Z) - A Preliminary Investigation of MLOps Practices in GitHub [10.190501703364234]
機械学習アプリケーションはMLOpsへの関心が高まっている。
GitHubから取得したML対応システムのセットで実装されているMLOpsプラクティスについて、まず最初に調査する。
論文 参考訳(メタデータ) (2022-09-23T07:29:56Z) - Characterizing Python Library Migrations [2.2557806157585834]
335Pythonライブラリのマイグレーションでは,3,096のマイグレーション関連のコード変更をラベル付けしています。
ライブラリペアの40%が、非関数型プログラム要素を含むAPIマッピングを持っていることが分かりました。
移行を行うには,平均して4つのAPIと2つのAPIマッピングについて学ぶ必要がある。
論文 参考訳(メタデータ) (2022-07-03T21:00:08Z) - Language Models as Zero-Shot Planners: Extracting Actionable Knowledge
for Embodied Agents [111.33545170562337]
自然言語で表現された高レベルなタスクを、選択された実行可能なステップのセットに基底付ける可能性について検討する。
事前学習したLMが十分に大きく、適切に誘導された場合、ハイレベルなタスクを効果的に低レベルな計画に分解できることがわかった。
本稿では,既存の実演の条件を規定し,計画が許容可能な行動に意味的に変換される手順を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:59:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。