論文の概要: A Generative AI Assistant to Accelerate Cloud Migration
- arxiv url: http://arxiv.org/abs/2401.01753v1
- Date: Wed, 3 Jan 2024 14:13:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-04 13:59:14.998212
- Title: A Generative AI Assistant to Accelerate Cloud Migration
- Title(参考訳): クラウド移行を高速化する生成AIアシスタント
- Authors: Amal Vaidya, Mohan Krishna Vankayalapati, Jacky Chan, Senad
Ibraimoski, Sean Moran
- Abstract要約: Cloud Migration LLMは、移行のパラメータを指定するユーザからの入力を受け入れ、アーキテクチャ図でマイグレーション戦略を出力する。
ユーザ調査によると、移行LLMは、経験の浅いユーザによる適切なクラウド移行プロファイルの発見を支援すると同時に、手作業によるアプローチの複雑さを回避することができる。
- 参考スコア(独自算出の注目度): 2.9248916859490173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a tool that leverages generative AI to accelerate the migration of
on-premises applications to the cloud. The Cloud Migration LLM accepts input
from the user specifying the parameters of their migration, and outputs a
migration strategy with an architecture diagram. A user study suggests that the
migration LLM can assist inexperienced users in finding the right cloud
migration profile, while avoiding complexities of a manual approach.
- Abstract(参考訳): 本稿では、生成aiを利用してオンプレミスアプリケーションのクラウドへの移行を加速するツールを提案する。
Cloud Migration LLMは、移行のパラメータを指定するユーザからの入力を受け入れ、アーキテクチャ図でマイグレーション戦略を出力する。
ユーザ調査によれば、マイグレーションllmは、手作業によるアプローチの複雑さを回避しつつ、経験の浅いユーザが適切なクラウド移行プロファイルを見つけるのを助けることができる。
関連論文リスト
- AdaSwitch: Adaptive Switching between Small and Large Agents for Effective Cloud-Local Collaborative Learning [36.37717583840935]
本研究では,大規模クラウドベースLLMと小規模ローカルデプロイLLMの協調運用を容易にする新しいLCM利用パラダイムを提案する。
本フレームワークは,比較的小型のLLMをインスタンス化したローカルエージェントと,大型のLLMを搭載したクラウドエージェントの2つの主要モジュールから構成される。
この協調処理は、ローカルエージェントがエラーを内観的に識別し、クラウドエージェントから積極的に支援を求める適応機構によって実現される。
論文 参考訳(メタデータ) (2024-10-17T03:07:37Z) - Example-Based Automatic Migration of Continuous Integration Systems [2.2836654317217326]
継続的インテグレーション(CI)は、コード変更の統合とテストの高速化に広く採用されているプラクティスです。
開発者はしばしば、マトリックスの構築やロギングの改善といった機能を追求して、CIシステム間で移行する。
この移行は、新しいCIシステムとその構文に関する知識が限られているため、集中的かつエラーを起こしやすい。
本稿では,CIシステムの自動マイグレーションのための新しいアプローチとして,CIMigを提案する。
論文 参考訳(メタデータ) (2024-07-02T20:19:21Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendationは、異なるドメイン間でユーザのシーケンシャルな好みをマイニングし、転送することを目的としている。
本稿では,ユーザ検索手法を探索し,CDSRの性能向上を目的とした URLLM という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T09:19:54Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents [65.38474102119181]
トレーニング環境を適応的に作成するフレームワークであるEnvGenを提案する。
我々は、LLM生成環境とLLM生成環境を混合した小さなRLエージェントを訓練する。
我々は、EnvGenで訓練された小さなRLエージェントが、GPT-4エージェントを含むSOTAメソッドより優れており、長い水平タスクをかなり高速に学習できることを発見した。
論文 参考訳(メタデータ) (2024-03-18T17:51:16Z) - Online Adaptation of Language Models with a Memory of Amortized Contexts [82.02369596879817]
MAC(Memory of Amortized Contexts)は、大規模言語モデルのための効率的かつ効果的なオンライン適応フレームワークである。
MACとMACを組み合わせれば,検索の高速化など,一般的な代替手段の性能が向上することを示す。
論文 参考訳(メタデータ) (2024-03-07T08:34:57Z) - SpotServe: Serving Generative Large Language Models on Preemptible
Instances [64.18638174004151]
SpotServeは、プリエンプティブルインスタンスにシステムを提供する最初の分散大規模言語モデルである。
SpotServeは、既存のLLMサービスシステムと比較して、P99テールのレイテンシを2.4~9.1倍削減できることを示す。
また、SpotServeはプリエンプティブインスタンスの価格優位性を利用して、オンデマンドインスタンスのみを使用する場合と比較して54%の金銭的コストを節約できることも示しています。
論文 参考訳(メタデータ) (2023-11-27T06:31:17Z) - Interactive, Iterative, Tooled, Rule-Based Migration of Microsoft Access
to Web Technologies [0.11650821883155184]
私たちは、Microsoft AccessのモノリシックアプリケーションをWebフロントエンドに移行し、バックエンドを生成する作業に取り組んでいます。
開発者がターゲットシステムへのマイグレーションを可能にするために,インタラクティブで反復的,ツーリング,ルールベースのマイグレーションアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-07T06:46:28Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Online Service Migration in Edge Computing with Incomplete Information:
A Deep Recurrent Actor-Critic Method [18.891775769665102]
マルチアクセスエッジコンピューティング(MEC)は、クラウドコンピューティングをネットワークエッジに拡張する新興コンピューティングパラダイムである。
サービス移行には,qos(quality-of-service)を維持するためのユーザサービスの移行場所を決定する必要がある
本稿では,ユーザ中心で効果的なオンライン移行決定が可能な,新たな学習駆動型手法である深層反復型アクタクリティックベースサービスマイグレーション(dracm)を提案する。
論文 参考訳(メタデータ) (2020-12-16T00:16:24Z) - Migratable AI: Personalizing Dialog Conversations with migration context [25.029958885340058]
クラウドソーシング作業者と移行コンテキストとの対話からデータセットを収集した。
我々は,移動コンテキストと非移動コンテキストを用いて,データセットの生成モデルと情報検索モデルを訓練した。
マイグレーションデータセットは、将来の微調整可能なAIシステムのトレーニングに有用であると考えています。
論文 参考訳(メタデータ) (2020-10-22T22:23:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。