論文の概要: Decomposition of Difficulties in Complex Optimization Problems Using a Bilevel Approach
- arxiv url: http://arxiv.org/abs/2407.03454v1
- Date: Wed, 3 Jul 2024 18:59:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 20:00:48.329792
- Title: Decomposition of Difficulties in Complex Optimization Problems Using a Bilevel Approach
- Title(参考訳): 双レベルアプローチによる複素最適化問題の解法
- Authors: Ankur Sinha, Dhaval Pujara, Hemant Kumar Singh,
- Abstract要約: 実際の最適化問題には、特定の最適化方法に依存する場合、しばしば難解な様々な困難が含まれている。
複雑な最適化問題に対して2つのアプローチを同時に適用できる分解戦略を提案する。
- 参考スコア(独自算出の注目度): 0.30723404270319693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Practical optimization problems may contain different kinds of difficulties that are often not tractable if one relies on a particular optimization method. Different optimization approaches offer different strengths that are good at tackling one or more difficulty in an optimization problem. For instance, evolutionary algorithms have a niche in handling complexities like discontinuity, non-differentiability, discreteness and non-convexity. However, evolutionary algorithms may get computationally expensive for mathematically well behaved problems with large number of variables for which classical mathematical programming approaches are better suited. In this paper, we demonstrate a decomposition strategy that allows us to synergistically apply two complementary approaches at the same time on a complex optimization problem. Evolutionary algorithms are useful in this context as their flexibility makes pairing with other solution approaches easy. The decomposition idea is a special case of bilevel optimization that separates the difficulties into two levels and assigns different approaches at each level that is better equipped at handling them. We demonstrate the benefits of the proposed decomposition idea on a wide range of test problems.
- Abstract(参考訳): 実際の最適化問題には、特定の最適化方法に依存する場合、しばしば難解な様々な困難が含まれている。
異なる最適化アプローチは、最適化問題の1つ以上の困難に取り組むのに長けている異なる強みを提供する。
例えば、進化的アルゴリズムは、不連続性、非微分可能性、離散性、非凸性といった複雑さを扱うニッチを持つ。
しかし、進化的アルゴリズムは、古典的な数学的プログラミングアプローチがより適した多くの変数を持つ数学的によく振る舞う問題に対して計算的に高価になる可能性がある。
本稿では,複素最適化問題に対して,相乗的に2つの相補的アプローチを同時に適用できる分解戦略を実証する。
進化的アルゴリズムは、柔軟性によって他のソリューションとのペアリングが容易になるため、この文脈で有用である。
分解のアイデアは、難易度を2つのレベルに分けた双レベル最適化の特殊なケースであり、それぞれのレベルに異なるアプローチを割り当て、それを扱うのに適している。
幅広いテスト問題に対して,提案手法の利点を実証する。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Smooth Tchebycheff Scalarization for Multi-Objective Optimization [15.047246588148495]
多目的最適化問題は、目的が相反することが多く、単一のソリューションでは最適化できない、多くの実世界のアプリケーションで見られる。
勾配に基づく多目的最適化のための軽量で効率的なスムーズなTchebycheffスキャラライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-29T12:03:05Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
現実の問題は、本質的には複数の最適値からなるマルチモーダルである。
古典的な勾配に基づく手法は、目的関数が不連続あるいは微分不可能な最適化問題に対して失敗する。
我々は,MMOPを解くために,拡張オポポジション微分進化(EODE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-23T16:18:27Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
そこで本研究では,両レベル問題を等価な制約付き最適化に変換する手法を提案する。
このようなアプローチには、(a)多重内極小問題への対処、(b)ジャコビアン計算のない完全一階効率など、いくつかの利点がある。
論文 参考訳(メタデータ) (2022-03-01T18:20:01Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
本稿では,Bregman Bregman関数に基づく二段階最適化手法を提案する。
また,分散還元法によるSBiO-BreD法(ASBiO-BreD)の高速化版も提案する。
論文 参考訳(メタデータ) (2021-07-26T16:18:43Z) - Learning Hard Optimization Problems: A Data Generation Perspective [44.4747903763245]
本稿では,トレーニングデータのボラティリティと,それを近似する能力について述べる。
そこで本研究では,教師付きタスクに対処可能な最適化問題に対して,(実際にあるいは近似的に)解を生成(生成)する方法を提案する。
論文 参考訳(メタデータ) (2021-06-04T17:03:44Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
本稿では, 絡み合いの役割, 変動量子回路の構造, 最適化問題の構造について検討する。
数値計算の結果,絡み合うゲートの分布を問題のトポロジに適応させる利点が示唆された。
リスク型コスト関数に条件値を適用することで最適化が向上し、最適解と重複する確率が増大することを示す。
論文 参考訳(メタデータ) (2021-03-26T14:06:54Z) - Optimistic variants of single-objective bilevel optimization for
evolutionary algorithms [6.788217433800101]
ベンチマーク問題を解くために部分的部分進化的アプローチが提案され、優れた結果が得られた。
また、一般的な収束アプローチ、すなわち楽観的で悲観的なアプローチにも新しい変種が提案されている。
実験の結果、アルゴリズムは楽観的な変量を持つ最適解に異なる収束性を示す。
論文 参考訳(メタデータ) (2020-08-22T23:12:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。