論文の概要: Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization
- arxiv url: http://arxiv.org/abs/2206.00176v1
- Date: Wed, 1 Jun 2022 01:43:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-03 07:00:49.490553
- Title: Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization
- Title(参考訳): 混合整数最適化によるスパース非線形ダイナミクスの学習
- Authors: Dimitris Bertsimas and Wes Gurnee
- Abstract要約: 分散整数最適化 (MIO) を用いたSINDyDy問題の厳密な定式化を提案し, 分散制約付き回帰問題を数秒で証明可能な最適性を求める。
正確なモデル発見における我々のアプローチの劇的な改善について説明するとともに、よりサンプリング効率が高く、ノイズに耐性があり、物理的制約の緩和にも柔軟である。
- 参考スコア(独自算出の注目度): 3.7565501074323224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering governing equations of complex dynamical systems directly from
data is a central problem in scientific machine learning. In recent years, the
sparse identification of nonlinear dynamics (SINDy) framework, powered by
heuristic sparse regression methods, has become a dominant tool for learning
parsimonious models. We propose an exact formulation of the SINDy problem using
mixed-integer optimization (MIO) to solve the sparsity constrained regression
problem to provable optimality in seconds. On a large number of canonical
ordinary and partial differential equations, we illustrate the dramatic
improvement of our approach in accurate model discovery while being more sample
efficient, robust to noise, and flexible in accommodating physical constraints.
- Abstract(参考訳): 複雑な力学系の支配方程式をデータから直接発見することは、科学機械学習における中心的な問題である。
近年、ヒューリスティックなスパース回帰法を利用した非線形力学(SINDy)フレームワークのスパース同定が、パシモニアスモデルを学習するための主要なツールとなっている。
分散整数最適化 (MIO) を用いたSINDy問題の厳密な定式化を提案し, 空間制約付き回帰問題を数秒で証明可能な最適性を求める。
多くの正準常微分方程式と偏微分方程式について、よりサンプル効率が高く、雑音に頑健で、物理的制約を満たしたフレキシブルでありながら、正確なモデル発見におけるアプローチの劇的な改善を示す。
関連論文リスト
- Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
本稿では,複雑なシステムにおける非線形力学の表現を強化するために,最適輸送理論と変位を利用した新しいリダクション・オーダー・モデル(ROM)を提案する。
複雑なシステム挙動の予測における精度と効率の向上を示し、計算物理学や工学における幅広い応用の可能性を示している。
論文 参考訳(メタデータ) (2024-11-13T16:29:33Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - Invertible Solution of Neural Differential Equations for Analysis of
Irregularly-Sampled Time Series [4.14360329494344]
本稿では,不規則な時系列データと不完全時系列データの複雑度を扱うために,ニューラル微分方程式(NDE)に基づく非可逆解を提案する。
計算負荷を低く抑えながら可逆性を確保するニューラルフローを用いたニューラル制御微分方程式(Neural Controlled Differential Equations, ニューラルCDE)の変動について提案する。
我々のアプローチの核となるのは拡張された二重潜在状態アーキテクチャであり、様々な時系列タスクにおいて高精度に設計されている。
論文 参考訳(メタデータ) (2024-01-10T07:51:02Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
データから動的システムを特定するために,機械的アプローチと機械学習アプローチを混在させる統一フレームワークを提案する。
モデルエラーがメモリレスであり、大きなメモリを持つ問題に対して、連続時間と離散時間の両方で問題を提起した。
ハイブリッド手法は、データ飢餓、モデルの複雑さの要求、全体的な予測性能において、データ駆動アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-07-14T12:47:48Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
この問題に対処するための新しいドメインに依存しないアプローチを提案する。
我々は、通常の微分方程式から導かれる物理インフォームド・ランダムな特徴の合成を用いる。
提案手法は,ベンチマーク回帰タスクにおいて,他の多くの確率モデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-06-10T17:55:13Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。