AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents
- URL: http://arxiv.org/abs/2407.04363v2
- Date: Mon, 9 Sep 2024 07:01:56 GMT
- Title: AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents
- Authors: Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Mikhail Burtsev, Evgeny Burnaev,
- Abstract summary: AriGraph is a memory graph that integrates semantic and episodic memories while exploring the environment.
We demonstrate that our Ariadne LLM agent effectively handles complex tasks within interactive text game environments difficult even for human players.
- Score: 19.249596397679856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in the capabilities of Large Language Models (LLMs) have created a promising foundation for developing autonomous agents. With the right tools, these agents could learn to solve tasks in new environments by accumulating and updating their knowledge. Current LLM-based agents process past experiences using a full history of observations, summarization, retrieval augmentation. However, these unstructured memory representations do not facilitate the reasoning and planning essential for complex decision-making. In our study, we introduce AriGraph, a novel method wherein the agent constructs and updates a memory graph that integrates semantic and episodic memories while exploring the environment. We demonstrate that our Ariadne LLM agent, consisting of the proposed memory architecture augmented with planning and decision-making, effectively handles complex tasks within interactive text game environments difficult even for human players. Results show that our approach markedly outperforms other established memory methods and strong RL baselines in a range of problems of varying complexity. Additionally, AriGraph demonstrates competitive performance compared to dedicated knowledge graph-based methods in static multi-hop question-answering.
Related papers
- How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
We propose WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system.
First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval.
Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process.
arXiv Detail & Related papers (2024-08-14T15:19:16Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - RS-GPT4V: A Unified Multimodal Instruction-Following Dataset for Remote Sensing Image Understanding [4.266920365127677]
Under the new LaGD paradigm, the old datasets are no longer suitable for fire-new tasks.
We designed a high-quality, diversified, and unified multimodal instruction-following dataset for RSI understanding.
The empirical results show that the fine-tuned MLLMs by RS-GPT4V can describe fine-grained information.
arXiv Detail & Related papers (2024-06-18T10:34:28Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
Large Language Models (LLMs) have demonstrated great potential in complex reasoning tasks, yet they fall short when tackling more sophisticated challenges.
This inadequacy primarily stems from the lack of built-in action knowledge in language agents.
We introduce KnowAgent, a novel approach designed to enhance the planning capabilities of LLMs by incorporating explicit action knowledge.
arXiv Detail & Related papers (2024-03-05T16:39:12Z) - Generative retrieval-augmented ontologic graph and multi-agent
strategies for interpretive large language model-based materials design [0.0]
Transformer neural networks show promising capabilities, in particular for uses in materials analysis, design and manufacturing.
Here we explore the use of large language models (LLMs) as a tool that can support engineering analysis of materials.
arXiv Detail & Related papers (2023-10-30T20:31:50Z) - A Versatile Graph Learning Approach through LLM-based Agent [33.37921145183175]
We propose to explore versatile graph learning approaches with LLM-based agents.
We develop several LLM-based agents equipped with diverse profiles, tools, functions and human experience.
By evaluating on diverse tasks and graphs, the correct results of the agent and its comparable performance showcase the versatility of the proposed method.
arXiv Detail & Related papers (2023-09-08T19:34:29Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Heterogeneous Relational Reasoning in Knowledge Graphs with
Reinforcement Learning [21.33973806169273]
We introduce a type-enhanced reinforcement learning agent that uses the local neighborhood information for efficient path-based reasoning over knowledge graphs.
Our solution uses graph neural network (GNN) for encoding the neighborhood information and utilizes entity types to prune the action space.
arXiv Detail & Related papers (2020-03-12T22:39:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.