論文の概要: Rethinking Data Input for Point Cloud Upsampling
- arxiv url: http://arxiv.org/abs/2407.04476v1
- Date: Fri, 5 Jul 2024 12:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:30:37.826671
- Title: Rethinking Data Input for Point Cloud Upsampling
- Title(参考訳): Point Cloud Upsamplingのためのデータ入力の再考
- Authors: Tongxu Zhang,
- Abstract要約: ポイントクラウドモデルフルインプットとパッチベースのインプットの違いと原則について議論する研究はない。
本稿では,PU-GCNのトレーニング中に形状整合性を確保するために,全点クラウドモデルを分割する新たなデータ入力手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, point cloud upsampling has been widely applied in fields such as 3D reconstruction and surface generation. However, existing point cloud upsampling inputs are all patch based, and there is no research discussing the differences and principles between point cloud model full input and patch based input. In order to compare with patch based point cloud input, this article proposes a new data input method, which divides the full point cloud model to ensure shape integrity while training PU-GCN. This article was validated on the PU1K and ABC datasets, but the results showed that Patch based performance is better than model based full input i.e. Average Segment input. Therefore, this article explores the data input factors and model modules that affect the upsampling results of point clouds.
- Abstract(参考訳): 近年,3次元再構成や表面生成などの分野において,点雲のアップサンプリングが広く行われている。
しかし、既存のポイントクラウドアップサンプリングインプットはすべてパッチベースであり、ポイントクラウドモデルフルインプットとパッチベースインプットの違いと原則について議論する研究はない。
本稿では、パッチベースの点クラウド入力と比較するため、PU-GCNのトレーニング中に全点クラウドモデルを分割して形状整合性を確保する新しいデータ入力手法を提案する。
本稿はPU1KとABCのデータセットで検証したが、Patchベースの性能はモデルベースの完全入力(平均セグメント入力)よりも優れていることが示された。
そこで本稿では,点雲のアップサンプリング結果に影響を与えるデータ入力要因とモデルモジュールについて検討する。
関連論文リスト
- P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
私たちは、Diffusion Schr"odingerブリッジをポイントクラウドに適応させる新しいフレームワークを通じて、ポイントクラウドを飾るタスクに取り組みます。
オブジェクトデータセットの実験では、P2P-Bridgeは既存のメソッドよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-08-29T08:00:07Z) - PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training [90.06520673092702]
生成点クラウドペアを用いた3Dポイントクラウドの登録をトレーニングのために促進するPointRegGPTを提案する。
我々の知る限り、これは屋内のクラウド登録のためのリアルなデータ生成を探求する最初の生成的アプローチである。
論文 参考訳(メタデータ) (2024-07-19T06:29:57Z) - Learning Continuous Implicit Field with Local Distance Indicator for
Arbitrary-Scale Point Cloud Upsampling [55.05706827963042]
点雲アップサンプリングは、疎点雲から密度が高く均一に分散した点集合を生成することを目的としている。
従来のメソッドは通常、スパースポイントクラウドをいくつかのローカルパッチ、アップサンプルパッチポイント、すべてのアップサンプルパッチにマージする。
そこで本研究では,点雲のアップサンプリングのために,局所的な先行者によって導かれる符号のない距離場を学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-23T01:52:14Z) - A Conditional Denoising Diffusion Probabilistic Model for Point Cloud
Upsampling [10.390581335119098]
PUDMと呼ばれる点群アップサンプリングのための条件分解拡散確率モデル(DDPM)を提案する。
PUDMはスパース点雲を条件として扱い、高密度点雲と雑音の間の変換関係を反復的に学習する。
PUDMは実験結果に強い耐雑音性を示す。
論文 参考訳(メタデータ) (2023-12-03T12:41:41Z) - Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
分割・分散アプローチを用いた新しい3dポイントクラウド生成フレームワークを考案する。
すべてのパッチジェネレータは学習可能な事前情報に基づいており、幾何学的プリミティブの情報を取得することを目的としている。
最も人気のあるポイントクラウドデータセットであるShapeNetのさまざまなオブジェクトカテゴリに関する実験結果は、提案したパッチワイドポイントクラウド生成の有効性を示している。
論文 参考訳(メタデータ) (2023-07-22T11:10:39Z) - Effective Utilisation of Multiple Open-Source Datasets to Improve
Generalisation Performance of Point Cloud Segmentation Models [0.0]
航空点雲データのセマンティックセグメンテーションは、地面、建物、植生などのクラスに属するポイントを区別するために利用することができる。
ドローンや飛行機に搭載された空中センサーから発生する点雲は、LIDARセンサーやカメラと光度計を利用することができる。
そこで本研究では,データセットの単純な組み合わせが,期待通りに一般化性能を向上したモデルを生成することを示す。
論文 参考訳(メタデータ) (2022-11-29T02:31:01Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
確率的3Dポイントクラウド登録法は、ノイズ、アウトレーヤ、密度変動を克服する競合性能を示した。
本稿では,一致したガウス混合モデル(GMM)パラメータから最適変換を演算する,重複誘導確率登録手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:02:33Z) - "Zero Shot" Point Cloud Upsampling [4.737519767218666]
本稿では,Zero Shot" Point Cloud Upsampling (ZSPU) と呼ばれる点群を総括的に監視する手法を提案する。
我々のアプローチは、自己学習とテストの両方のフェーズにパッチを当てることなく、特定のポイントクラウドによって提供される内部情報のみに基づいています。
ZSPUは、複雑な局所的な詳細や高い曲率を持つ形状の質的な結果を得る。
論文 参考訳(メタデータ) (2021-06-25T17:06:18Z) - OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud
Registration [31.108056345511976]
OMNetは、部分から部分へのポイントクラウド登録のためのグローバル機能ベースの反復ネットワークです。
マスクを粗雑に学習し,重複しない領域を拒絶し,部分から部分への登録を同一形状の登録に変換する。
論文 参考訳(メタデータ) (2021-03-01T11:59:59Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
点雲完了は、部分的な観測から3次元形状の点集合表現を用いて完全な幾何学を予測するタスクである。
従来のアプローチでは、不完全点集合によって供給されるエンコーダ・デコーダモデルにより、点雲全体を直接推定するニューラルネットワークが提案されていた。
本稿では、欠落した幾何を計算し、既知の入力と予測点クラウドを融合することに焦点を当てたエンドツーエンドニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-08T22:01:23Z) - Point Set Voting for Partial Point Cloud Analysis [26.31029112502835]
近年、ポイントクラウドの分類とセグメンテーションのための技術は、大きな合成データセットを活用することで、驚くべきパフォーマンスを実現している。
本稿では, 局所点集合投票戦略を適用して, 完全点群を符号化した潜在特徴を推定する部分点群解析の一般モデルを提案する。
論文 参考訳(メタデータ) (2020-07-09T03:37:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。