Gaussian Eigen Models for Human Heads
- URL: http://arxiv.org/abs/2407.04545v1
- Date: Fri, 5 Jul 2024 14:30:24 GMT
- Title: Gaussian Eigen Models for Human Heads
- Authors: Wojciech Zielonka, Timo Bolkart, Thabo Beeler, Justus Thies,
- Abstract summary: We present personalized Gaussian Eigen Models (GEMs) for human heads, a novel method that compresses dynamic 3D Gaussians into low-dimensional linear spaces.
Our approach is inspired by the seminal work of Blanz and Vetter, where a mesh-based 3D morphable model (3DMM) is constructed from registered meshes.
We show and compare self-reenactment and cross-person reenactment to state-of-the-art 3D avatar methods, demonstrating higher quality and better control.
- Score: 28.49783203616257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present personalized Gaussian Eigen Models (GEMs) for human heads, a novel method that compresses dynamic 3D Gaussians into low-dimensional linear spaces. Our approach is inspired by the seminal work of Blanz and Vetter, where a mesh-based 3D morphable model (3DMM) is constructed from registered meshes. Based on dynamic 3D Gaussians, we create a lower-dimensional representation of primitives that applies to most 3DGS head avatars. Specifically, we propose a universal method to distill the appearance of a mesh-controlled UNet Gaussian avatar using an ensemble of linear eigenbasis. We replace heavy CNN-based architectures with a single linear layer improving speed and enabling a range of real-time downstream applications. To create a particular facial expression, one simply needs to perform a dot product between the eigen coefficients and the distilled basis. This efficient method removes the requirement for an input mesh during testing, enhancing simplicity and speed in expression generation. This process is highly efficient and supports real-time rendering on everyday devices, leveraging the effectiveness of standard Gaussian Splatting. In addition, we demonstrate how the GEM can be controlled using a ResNet-based regression architecture. We show and compare self-reenactment and cross-person reenactment to state-of-the-art 3D avatar methods, demonstrating higher quality and better control. A real-time demo showcases the applicability of the GEM representation.
Related papers
- SHeaP: Self-Supervised Head Geometry Predictor Learned via 2D Gaussians [55.813327441814344]
3D reconstruction of human heads from monocular images and videos underlies numerous visual applications.
Previous methods have sought to learn from abundant 2D videos in a self-supervised manner.
We propose SHeaP (Self-supervised Head Geometry Predictor Learned via 2D Gaussians)
arXiv Detail & Related papers (2025-04-16T17:55:02Z) - Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities [10.816370283498287]
We introduce the "Gaussian Deja-vu" framework, which first obtains a generalized model of the head avatar and then personalizes the result.
For personalizing, we propose learnable expression-aware rectification blendmaps, ensuring rapid convergence without the reliance on neural networks.
It outperforms state-of-the-art 3D Gaussian head avatars in terms of photorealistic quality as well as reduces training time consumption to at least a quarter of the existing methods.
arXiv Detail & Related papers (2024-09-23T00:11:30Z) - GPHM: Gaussian Parametric Head Model for Monocular Head Avatar Reconstruction [47.113910048252805]
High-fidelity 3D human head avatars are crucial for applications in VR/AR, digital human, and film production.
Recent advances have leveraged morphable face models to generate animated head avatars, representing varying identities and expressions.
We introduce 3D Gaussian Parametric Head Model, which employs 3D Gaussians to accurately represent the complexities of the human head.
arXiv Detail & Related papers (2024-07-21T06:03:11Z) - iHuman: Instant Animatable Digital Humans From Monocular Videos [16.98924995658091]
We present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos.
This work achieves and illustrates the need of accurate 3D mesh-type modelling of the human body.
Our method is faster by an order of magnitude (in terms of training time) than its closest competitor.
arXiv Detail & Related papers (2024-07-15T18:51:51Z) - Expressive Gaussian Human Avatars from Monocular RGB Video [69.56388194249942]
We introduce EVA, a drivable human model that meticulously sculpts fine details based on 3D Gaussians and SMPL-X.
We highlight the critical importance of aligning the SMPL-X model with RGB frames for effective avatar learning.
We propose a context-aware adaptive density control strategy, which is adaptively adjusting the gradient thresholds.
arXiv Detail & Related papers (2024-07-03T15:36:27Z) - MeshXL: Neural Coordinate Field for Generative 3D Foundation Models [51.1972329762843]
We present a family of generative pre-trained auto-regressive models, which addresses the process of 3D mesh generation with modern large language model approaches.
MeshXL is able to generate high-quality 3D meshes, and can also serve as foundation models for various down-stream applications.
arXiv Detail & Related papers (2024-05-31T14:35:35Z) - 3D Gaussian Blendshapes for Head Avatar Animation [31.488663463060416]
We introduce 3D Gaussian blendshapes for modeling photorealistic head avatars.
The avatar model of an arbitrary expression can be effectively generated by combining the neutral model and expression blendshapes.
High-fidelity head avatar animations can be synthesized in real time using Gaussian splatting.
arXiv Detail & Related papers (2024-04-30T09:45:41Z) - GoMAvatar: Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh [97.47701169876272]
GoMAvatar is a novel approach for real-time, memory-efficient, high-quality human modeling.
GoMAvatar matches or surpasses current monocular human modeling algorithms in rendering quality.
arXiv Detail & Related papers (2024-04-11T17:59:57Z) - Bridging 3D Gaussian and Mesh for Freeview Video Rendering [57.21847030980905]
GauMesh bridges the 3D Gaussian and Mesh for modeling and rendering the dynamic scenes.
We show that our approach adapts the appropriate type of primitives to represent the different parts of the dynamic scene.
arXiv Detail & Related papers (2024-03-18T04:01:26Z) - Controllable Text-to-3D Generation via Surface-Aligned Gaussian Splatting [9.383423119196408]
We introduce Multi-view ControlNet (MVControl), a novel neural network architecture designed to enhance existing multi-view diffusion models.
MVControl is able to offer 3D diffusion guidance for optimization-based 3D generation.
In pursuit of efficiency, we adopt 3D Gaussians as our representation instead of the commonly used implicit representations.
arXiv Detail & Related papers (2024-03-15T02:57:20Z) - GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning [60.33970027554299]
Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations.
In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions.
Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts.
arXiv Detail & Related papers (2023-12-18T18:59:12Z) - ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering [62.81677824868519]
We propose an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time.
We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering.
We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
arXiv Detail & Related papers (2023-12-10T17:07:37Z) - GaussianHead: High-fidelity Head Avatars with Learnable Gaussian Derivation [35.39887092268696]
This paper presents a framework to model the actional human head with anisotropic 3D Gaussians.
In experiments, our method can produce high-fidelity renderings, outperforming state-of-the-art approaches in reconstruction, cross-identity reenactment, and novel view synthesis tasks.
arXiv Detail & Related papers (2023-12-04T05:24:45Z) - Learning Personalized High Quality Volumetric Head Avatars from
Monocular RGB Videos [47.94545609011594]
We propose a method to learn a high-quality implicit 3D head avatar from a monocular RGB video captured in the wild.
Our hybrid pipeline combines the geometry prior and dynamic tracking of a 3DMM with a neural radiance field to achieve fine-grained control and photorealism.
arXiv Detail & Related papers (2023-04-04T01:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.