論文の概要: BrainMetDetect: Predicting Primary Tumor from Brain Metastasis MRI Data Using Radiomic Features and Machine Learning Algorithms
- arxiv url: http://arxiv.org/abs/2407.05051v1
- Date: Sat, 6 Jul 2024 11:34:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:18:15.706263
- Title: BrainMetDetect: Predicting Primary Tumor from Brain Metastasis MRI Data Using Radiomic Features and Machine Learning Algorithms
- Title(参考訳): BrainMetDetect: 放射線特徴と機械学習アルゴリズムを用いた脳転移MRIデータからの原発性腫瘍の予測
- Authors: Hamidreza Sadeghsalehi,
- Abstract要約: 脳転移 (BM) はがん患者に一般的であり, 腫瘍部位の決定は治療に重要である。
本研究は, 放射能特徴と高度な機械学習アルゴリズムを用いて, BM MRIデータから一次腫瘍部位を予測することを目的とする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: Brain metastases (BMs) are common in cancer patients and determining the primary tumor site is crucial for effective treatment. This study aims to predict the primary tumor site from BM MRI data using radiomic features and advanced machine learning algorithms. Methods: We utilized a comprehensive dataset from Ocana-Tienda et al. (2023) comprising MRI and clinical data from 75 patients with BMs. Radiomic features were extracted from post-contrast T1-weighted MRI sequences. Feature selection was performed using the GINI index, and data normalization was applied to ensure consistent scaling. We developed and evaluated Random Forest and XGBoost classifiers, both with and without hyperparameter optimization using the FOX (Fox optimizer) algorithm. Model interpretability was enhanced using SHAP (SHapley Additive exPlanations) values. Results: The baseline Random Forest model achieved an accuracy of 0.85, which improved to 0.93 with FOX optimization. The XGBoost model showed an initial accuracy of 0.96, increasing to 0.99 after optimization. SHAP analysis revealed the most influential radiomic features contributing to the models' predictions. The FOX-optimized XGBoost model exhibited the best performance with a precision, recall, and F1-score of 0.99. Conclusion: This study demonstrates the effectiveness of using radiomic features and machine learning to predict primary tumor sites from BM MRI data. The FOX optimization algorithm significantly enhanced model performance, and SHAP provided valuable insights into feature importance. These findings highlight the potential of integrating radiomics and machine learning into clinical practice for improved diagnostic accuracy and personalized treatment planning.
- Abstract(参考訳): 目的: がん患者では脳転移(BM)が一般的であり, 原発巣の決定は治療に不可欠である。
本研究は, 放射能特徴と高度な機械学習アルゴリズムを用いて, BM MRIデータから一次腫瘍部位を予測することを目的とする。
方法: Ocana-Tienda et al (2023) の総括的データセットを用いて, BM75例のMRIおよび臨床データを用いた。
造影T1強調画像から放射線学的特徴を抽出した。
GINIインデックスを用いて特徴選択を行い、一貫したスケーリングを保証するためにデータ正規化を適用した。
FOX (Fox Optimizationr) アルゴリズムを用いて, パラメータ最適化と非パラメータ最適化を併用したランダムフォレストとXGBoostの分類器を開発し, 評価した。
モデル解釈性はSHAP(SHapley Additive exPlanations)値を用いて向上した。
結果: ベースラインのランダムフォレストモデルは0.85の精度を達成し、FOX最適化により0.93に改善された。
XGBoostモデルの初期精度は0.96で、最適化後に0.99に向上した。
SHAP分析では、最も影響力のある放射能特性がモデルの予測に寄与していることが判明した。
FOX最適化XGBoostモデルは精度、リコール、F1スコア0.99で最高の性能を示した。
結論: この研究は, BM MRIデータから, 放射線学的特徴と機械学習を用いて原発巣を推定する効果を実証した。
FOX最適化アルゴリズムはモデル性能を大幅に向上させ、SHAPは機能の重要性に関する貴重な洞察を提供した。
これらの知見は、診断精度の向上とパーソナライズされた治療計画のために、放射線学と機械学習を臨床実践に統合する可能性を強調した。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling [4.1032659987778315]
放射線的特徴セットの高次元性、放射線的特徴タイプの変動性、そして潜在的に高い計算要求は、全て、与えられた臨床問題に対する最小の予測的特徴セットを特定する効果的な方法の必要性を浮き彫りにしている。
我々は,最小限の放射線学的特徴を識別し,説明するための方法論とツールを開発する。
論文 参考訳(メタデータ) (2024-07-05T23:14:46Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction [0.0]
脳腫瘍は、死亡率80%を超える最も致命的ながんの1つである。
医学的分析では、脳腫瘍の手動アノテーションとセグメンテーションは複雑な作業である。
本稿では,データ前処理中に実装された関心領域検出アルゴリズムを提案する。
ソフトアテンションを持つ完全畳み込みオートエンコーダは、異なる脳MRIをセグメント化する。
論文 参考訳(メタデータ) (2023-12-31T20:42:52Z) - Advancing Brain Tumor Detection: A Thorough Investigation of CNNs,
Clustering, and SoftMax Classification in the Analysis of MRI Images [0.0]
脳腫瘍は、すべての年齢層で高い有病率と死亡率のため、世界的な健康上の大きな課題となる。
本研究は,MRI画像を用いた脳腫瘍検出における畳み込みニューラルネットワーク(CNN)の使用に関する包括的研究である。
このデータセットは、健康な個人と脳腫瘍患者のMRIスキャンで作成され、CNNアーキテクチャーに入力された。
論文 参考訳(メタデータ) (2023-10-26T18:27:20Z) - An Optimized Ensemble Deep Learning Model For Brain Tumor Classification [3.072340427031969]
脳腫瘍の不正確な同定は、寿命を著しく低下させる。
本研究は,脳腫瘍を効率よく分類するための伝達学習(TL)を用いた,革新的な最適化に基づく深層アンサンブル手法を提案する。
Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, GSWOはそれぞれ99.42%, 98.37%, 98.22%, 98.26%, 99.71%, 99.76%に達した。
論文 参考訳(メタデータ) (2023-05-22T09:08:59Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
手術前セグメンテーションのための2つの最先端ニューラルネットワークアーキテクチャをトレーニングした。
最高の成績は61%のDiceスコアで、最高の分類性能は80%のバランスの取れた精度で達成された。
予測セグメンテーションは、患者を残存腫瘍と全切除患者に正確に分類するために用いられる。
論文 参考訳(メタデータ) (2023-04-18T10:14:45Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
磁気共鳴画像(MRI)における脳腫瘍の検出・分類のための2段階深層学習フレームワークの提案
第1フェーズでは、健康な人から腫瘍MRI画像を検出するために、新しい深層化特徴とアンサンブル分類器(DBF-EC)方式が提案されている。
第2段階では, 異なる腫瘍タイプを分類するために, 動的静的特徴とML分類器からなる融合型脳腫瘍分類法が提案されている。
論文 参考訳(メタデータ) (2022-01-14T10:24:47Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
放射線モデルは、グリオ芽腫(GBM)の結果予測のための臨床データを上回ることが示されています。
GBM患者の生存率(OS),IDH変異,O-6-メチルグアニン-DNA-メチルトランスフェラーゼ(MGMT)プロモーターメチル化,EGFR(EGFR)VII増幅,Ki-67発現の9種類の機械学習分類器を比較した。
xgb は os (74.5%), ab for idh 変異 (88%), mgmt メチル化 (71,7%), ki-67 発現 (86,6%), egfr増幅 (81。
論文 参考訳(メタデータ) (2021-02-10T15:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。