論文の概要: Instructors as Innovators: A future-focused approach to new AI learning opportunities, with prompts
- arxiv url: http://arxiv.org/abs/2407.05181v1
- Date: Tue, 23 Apr 2024 04:01:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 14:29:03.381050
- Title: Instructors as Innovators: A future-focused approach to new AI learning opportunities, with prompts
- Title(参考訳): インストラクター・アズ・イノベーター:新しいAI学習の機会に焦点をあてた将来的なアプローチ
- Authors: Ethan Mollick, Lilach Mollick,
- Abstract要約: 本稿では,教師が生成型AIを活用して生徒にパーソナライズされた学習体験を創出する方法を考察する。
我々は、シミュレーション、メンタリング、コーチング、共同創造を含む、新しい形の実践と応用を可能にするAIベースのエクササイズを提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores how instructors can leverage generative AI to create personalized learning experiences for students that transform teaching and learning. We present a range of AI-based exercises that enable novel forms of practice and application including simulations, mentoring, coaching, and co-creation. For each type of exercise, we provide prompts that instructors can customize, along with guidance on classroom implementation, assessment, and risks to consider. We also provide blueprints, prompts that help instructors create their own original prompts. Instructors can leverage their content and pedagogical expertise to design these experiences, putting them in the role of builders and innovators. We argue that this instructor-driven approach has the potential to democratize the development of educational technology by enabling individual instructors to create AI exercises and tools tailored to their students' needs. While the exercises in this paper are a starting point, not a definitive solutions, they demonstrate AI's potential to expand what is possible in teaching and learning.
- Abstract(参考訳): 本稿では,教師が生成型AIを活用して,教育と学習を変革する学生のためのパーソナライズされた学習体験を構築する方法について考察する。
我々は、シミュレーション、メンタリング、コーチング、共同創造を含む、新しい形の実践と応用を可能にするAIベースのエクササイズを提示する。
それぞれのエクササイズに対して,授業実施や評価,検討すべきリスクに関するガイダンスとともに,インストラクターがカスタマイズ可能なプロンプトを提供する。
また、インストラクターが独自のプロンプトを作成するのに役立つブループリントやプロンプトも提供しています。
インストラクタは、コンテンツと教育の専門知識を活用して、これらのエクスペリエンスを設計し、ビルダーやイノベーターの役割を担います。
このインストラクター主導のアプローチは、個々のインストラクターが生徒のニーズに合わせてAI演習やツールを作成できるようにすることで、教育技術の発達を民主化する可能性があると我々は主張する。
この論文のエクササイズは出発点であり、決定的な解決策ではないものの、AIが教育や学習で何ができるかを拡大する可能性を示している。
関連論文リスト
- Collaborative Design of AI-Enhanced Learning Activities [0.0]
我々は、プレサービス教師、インサービス教師、EdTechスペシャリストがAIを教育実践に効果的に組み込むことができるような形式的な介入を開発する。
参加者は、AIリテラシーを教育に組み込むさまざまなアクティビティを探求することで、AIの教育と学習のポテンシャルを反映している。
論文 参考訳(メタデータ) (2024-07-09T08:34:08Z) - Representational Alignment Supports Effective Machine Teaching [81.19197059407121]
我々は,機械教育の知見と実践的なコミュニケーションを,表現的アライメントに関する文献と統合する。
教師の精度から表現的アライメントを遠ざける教師付き学習環境を設計する。
論文 参考訳(メタデータ) (2024-06-06T17:48:24Z) - Towards Educator-Driven Tutor Authoring: Generative AI Approaches for Creating Intelligent Tutor Interfaces [0.31873871499564926]
我々は、教師インターフェイス作成において、教育者を支援するための生成AI機能を導入する。
提案手法では,Large Language Models (LLM) を利用して,チューターのレイアウトと内容を生成する。
小規模比較では,教師インタフェース設計の効率を高めるためのアプローチの可能性を示している。
論文 参考訳(メタデータ) (2024-05-23T15:46:10Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Understanding Teacher Perspectives and Experiences after Deployment of
AI Literacy Curriculum in Middle-school Classrooms [12.35885897302579]
我々は,MIT RAICAカリキュラムのモジュール実装にともなう7人の教師の経験を考察した。
我々の分析は、AIモジュールが、この分野における教師の知識を拡大したことを示唆している。
私たちの教師は、技術資源をナビゲートする際に、より良い外部支援の必要性を主張しました。
論文 参考訳(メタデータ) (2023-12-08T05:36:16Z) - Anticipating User Needs: Insights from Design Fiction on Conversational Agents for Computational Thinking [10.363782876965221]
本研究では,演習を通じて学生を段階的に指導する対話エージェントを構想し,その指導方法を教育的背景,スキルと欠陥,学習嗜好を意識して調整する。
本稿では,計算思考とコンピュータプログラミングの教育を指向した学習エージェントの今後の実装について考察する。
論文 参考訳(メタデータ) (2023-11-12T16:19:03Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
外部教師が提供した構造化アドバイスから学習する「教育可能な」意思決定システムに基づく対話型学習のための新しい指導パラダイムを提案する。
我々は、アドバイスから学ぶエージェントが、標準的な強化学習アルゴリズムよりも人的監督力の少ない新しいスキルを習得できることを示す。
論文 参考訳(メタデータ) (2022-03-19T03:22:57Z) - An Experience Report of Executive-Level Artificial Intelligence
Education in the United Arab Emirates [53.04281982845422]
アラブ首長国連邦(UAE)のビジネスエグゼクティブにAIコースを教える経験報告を提示する。
理論的、技術的な側面にのみ焦点をあてるのではなく、学生が既存のビジネスプロセスにAIを組み込む方法を理解するためにAIを教えるコースを開発しました。
論文 参考訳(メタデータ) (2022-02-02T20:59:53Z) - Towards Understanding the Impact of Real-Time AI-Powered Educational
Dashboards (RAED) on Providing Guidance to Instructors [0.0]
リアルタイムAIを活用した教育ダッシュボード(RAED)は、インストラクターのための意思決定支援ツールである。
AIの現在の開発は、教育ダッシュボードと組み合わせてAI駆動にすることができる。
論文 参考訳(メタデータ) (2021-07-30T03:22:41Z) - Interaction-limited Inverse Reinforcement Learning [50.201765937436654]
本稿では,教師の視点をカバーしたカリキュラム逆強化学習(CIRL)と,学習者の視点に着目した自己適用逆強化学習(SPIRL)の2つの訓練戦略を提案する。
シミュレーション実験と実ロボットを用いた実験により,CIRLの無作為教師やSPIRLのバッチ学習者よりも高速な学習が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-01T12:31:52Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。